
Exploring ChatGPT for Toxicity Detection in GitHub
Shyamal Mishra
Drexel university

Philadelphia, Pennsylvania, USA
sm4825@drexel.edu

Preetha Chatterjee
Drexel university

Philadelphia, Pennsylvania, USA
preetha.chatterjee@drexel.edu

Abstract
Fostering a collaborative and inclusive environment is crucial for
the sustained progress of open source development. However, the
prevalence of negative discourse, often manifested as toxic com-
ments, poses signi�cant challenges to developer well-being and
productivity. To identify such negativity in project communica-
tions, especially within large projects, automated toxicity detection
models are necessary. To train these models e�ectively, we need
large software engineering-speci�c toxicity datasets. However, such
datasets are limited in availability and often exhibit imbalance (e.g.,
only 6 in 1000 GitHub issues are toxic) [1], posing challenges for
training e�ective toxicity detectionmodels. To address this problem,
we explore a zero-shot LLM (ChatGPT) that is pre-trained on mas-
sive datasets but without being �ne-tuned speci�cally for the task
of detecting toxicity in software-related text. Our preliminary eval-
uation indicates that ChatGPT shows promise in detecting toxicity
in GitHub, and warrants further investigation. We experimented
with various prompts, including those designed for justifying model
outputs, thereby enhancing model interpretability and paving the
way for potential integration of ChatGPT-enabled toxicity detection
into developer communication channels.

ACM Reference Format:
Shyamal Mishra and Preetha Chatterjee. 2023. Exploring ChatGPT for Tox-
icity Detection in GitHub. In Proceedings of 46th International Conference
on Software Engineering (ICSE 2024). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The open source software (OSS) development community has emerged
as a powerful engine driving innovation and collaboration across
various domains. The fundamental principle of collective problem
solving has led to the creation of exceptional software projects.
However, amidst this collaborative landscape, the prevalence of
negative discourse, often manifested as toxic comments, causes
substantial harm on developers, diminishing their well-being, moti-
vation, job satisfaction, and productivity [1–10]. In a 2017 GitHub
survey, it was found that 50% of OSS developers experienced nega-
tive interactions. Among those, 21% mentioned that such behavior
led them to stop contributing [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mitigating negativity is essential to cultivate healthier and more
productive software environments and retain talent [12–15]. Col-
laboration platforms such as GitHub has implemented preliminary
measures to tackle negative behavior, such as issue locking [16],
but such manual inspection remains labor-intensive due to the
sheer volume of daily content. More recently, machine learning-
based techniques for detecting toxicity in software-related text have
started emerging [1, 12, 17, 18]. However, these models often show
a high false positive rate and limited generalizability across di�er-
ent communication types (e.g., issue comments , code reviews) [19].
Creating e�ective toxicity detection models is challenging due to
limited open-source toxicity datasets [4, 17, 20]. Additionally, these
datasets are often imbalanced, with just 6 out of 1000 issues be-
ing toxic [1], making training e�ective models a hurdle. Therefore,
there is a signi�cant gap in the development and adoption of e�ec-
tive automated techniques for identifying toxic conversations in
software engineering platforms.

Large LanguageModels (LLMs) have recently gained prominence
as a powerful category of deep learning technique, demonstrating
their e�ectiveness in related tasks such as emotion and sentiment
analysis [21–33]. Some of the most substantial and in�uential LLMs,
such as ChatGPT [34], are readily available that can be deployed
as a “zero-shot" model, without requiring speci�c �ne-tuning for a
particular task. Given that creating an extensive training dataset
for toxicity detection in software engineering communication is
costly and resource-intensive, utilizing a zero-shot approach o�ers
an attractive alternative. In this paper, we explore ChatGPT [34]
in detecting toxicity in software-related text. We use a benchmark
toxicity dataset of 1597 GitHub issue comments [1] to evaluate
the model, and conduct a qualitative analysis to understand the
common errors. Speci�cally, we investigate the following research
questions:

• RQ1. How e�ective is OpenAI’s ChatGPT in detecting toxic text
on GitHub?

• RQ2. What types of toxic comments are misclassi�ed or di�cult
to detect using ChatGPT?

Our preliminary �ndings suggest that ChatGPT shows promise in
detecting toxicity in GitHub, achieving a precision of 0.49 and recall
of 0.94. This result is comparable to the state-of-the-art domain-
speci�c toxicity detectors (e.g., Raman et al. [1] showed a precision
of 0.91 and a recall of 0.42 on the same dataset). We explore di�er-
ent prompts, including those intended for explaining model results,
thus improving model interpretability, and thus opening up possi-
bilities for integrating ChatGPT-supported toxicity detection into
developer communication platforms. We also show an example im-
plementation of possible proactive moderation of toxic content by
integrating ChatGPT into Slack, a popular developer chat platform.

ICSE 2024, April 2024, Lisbon, Portugal Shyamal Mishra and Preetha Cha�erjee

2 Methodology
2.1 Dataset
We analyze a benchmark dataset of 1597 GitHub issue comments
(102 toxic, 1495 non-toxic) manually curated by Raman et al. [1].
First, they used the GitHub API to identify issue threads that had
been locked as “too heated" among 118k GitHub projects. Of the
294k locked issues, 654 were explicitly marked as “too heated".
Several of these locked discussions contained toxic behavior. Next,
they manually reviewed these discussions, labeling comments as
toxic or non-toxic.

2.2 OpenAI Chat Completion API
We employ OpenAI’s GPT-3.5 Turbo through the Chat Comple-
tion API to investigate toxicity in software developer community
conversations. The Chat Completion API allows us to generate
responses to a �xed prompt, simulating a conversation with the
model. We use this API to create a conversational setting where we
can evaluate the content for potential toxicity.

2.3 Prompt Design
E�ective prompt design is a critical aspect of utilizing OpenAI APIs
to achieve desired outcomes in natural language processing tasks.
The choice of prompt signi�cantly in�uences the quality, relevance,
and accuracy of the model’s responses. Our approach involves
designing speci�c prompts that guide the model’s responses in
evaluating the level of toxicity in the provided conversation. The
prompts were carefully designed by using the existing literature
on this topic [35–38].

We conducted a series of experiments employing various prompt
structures and formulations. The goal of these experiments was
to identify the most e�ective prompt design that aligns with our
research objective of detecting toxicity in software-related text.
We tested 15 di�erent prompts, each with unique characteristics,
instructions, and response options.

2.3.1 Prompt Variations. We explored few strategies to design the
prompt to detect toxicity. Our prompt variations are guided by
Google’s Conversation AI research in toxicity detection [39]. Some
of the prompt characteristics we investigated include:

• The category of toxicity labels; i.e., binary (yes/no), multiclass
(e.g., "Very Toxic," "Toxic," "Slightly Toxic")

• The framing of the task; i.e., question-based (e.g., “Does the fol-
lowing comment exhibit toxicity?"), statement-based (e.g., “As-
sess the following statement for any indication of toxicity.")

Through these experiments, we made the following observations:

• Clarity of task instruction: Prompts that provided clear and spe-
ci�c instructions led to more consistent and accurate assessments
of toxicity. Ambiguity in prompts often resulted in less reliable
outcomes.

• Length of task instruction: While detailed prompts were helpful
in conveying the desired task, overly lengthy/complex instruc-
tions sometimes led to model confusion, and verbosity in the
outputs. Striking the right balance between clarity and length
was essential for better performance.

• Classi�cation Category: The use of multi-level toxicity categories,
such as "Very Toxic," "Toxic," and "Slightly Toxic," allowed for
better understanding of subtle or nuanced forms of toxicity (e.g.,
passive aggressiveness).

2.3.2 Selected Prompts. Based on the observations of our experi-
ments, we selected three prompts that demonstrated e�ectiveness
in detecting toxicity (in terms of our evaluation metrics). Due to the
lack of space, we present only the 3 selected prompts as follows:

Table 1: Prompt Descriptions for Toxicity Detection

Prompt 1 Given the following software developer conver-
sation, do you think this contains any toxicity?
Please provide your answer in yes/no.

Prompt 2 Examine whether the software engineering com-
munity discussion includes toxicity. Please provide
your answer in Very Toxic/Toxic/Slightly Toxic/Not
Toxic.

Prompt 3 Examine whether the open-source developer com-
munity discussion includes toxicity.
Very Toxic - a very hateful, aggressive, disrespect-
ful comment or otherwise very likely to make a
user leave a discussion or give up on sharing their
perspective.
Toxic - a rude, disrespectful, unreasonable com-
ment or otherwise somewhat likely to make a user
leave a discussion or give up on sharing their per-
spective.
Slightly Toxic or hard to say.
Not toxic.

2.4 Model Parameters
LLM generated outputs can be non-deterministic [40]. We con-
ducted extensive experimentation with di�erent temperature set-
tings to observe their impact on toxicity detection. Temperature
in�uences how this model generates text [41]. When set to a lower
value, such as 0.2, the generated text becomes more deterministic,
honing in on speci�c patterns and producing relatively conservative,
"safe" responses. In contrast, increasing the temperature to higher
values, such as 1.0 or above, introduces an element of randomness,
bestowing the text with greater diversity and creativity. We used
three temperature values; 0.2, 0.7, and 1.2 for our experiments. For
the rest of the parameters, we used the default settings.

2.5 Evaluation Metrics
We evaluate the model’s performance using a set of metrics that are
frequently used to evaluate classi�cation tasks: F1-score, Precision,
and Recall. These metrics provide insights into the model’s ability to
identify true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN). Precision is the ratio of TP instances to
the total predicted positive instances (i.e., Precision =)%

)%+�%), and
Recall is the ratio of TP instances to all instances in the positive class
(i.e., Recall =)%

)%+�#). F1-score is the harmonic mean of Precision
and Recall (i.e., F1-score = 2 ⇤ %A428B8>=⇤'420;;

%A428B8>=+'420;;).

Exploring ChatGPT for Toxicity Detection in GitHub ICSE 2024, April 2024, Lisbon, Portugal

For calculating the evaluation metrics, we need to convert the
toxicity labels of the model outputs to binary (toxic/non-toxic).
Prompt 1 outputs are already in this format. For Prompts 2 and 3,
we consider Very Toxic/Toxic/Slightly Toxic as ‘toxic’, and not toxic
as ‘non-toxic’.

3 Preliminary Observations
In this section, we discuss our observations in using ChatGPT to
detect toxic instances of GitHub issue comments.

3.1 Evaluating E�ectiveness
RQ1. How e�ective is OpenAI’s ChatGPT in detecting toxic text on
GitHub?
Table 2 shows the results of the three selected prompts with varying
temperature values (0.2, 0.7, 1.2) in detecting toxicity in the Raman
et al. GitHub issue comments dataset.

We observe that the choice of prompts has a notable impact
on the performance of the model in toxicity detection. Among
all the three prompts, Prompt 1 produced most e�ective results,
achieving the highest F-score of 0.64 with temperature=0.2, 0.55
with temperature=0.7, and 0.54 with temperature=1.2. There could
be several reasons for this outcome such as: (a) Simplicity: Prompt
1’s straightforward question simpli�es the task for the model. It
only requires determining whether toxicity is present or not (binary
classi�cation); (b) Lack of Ambiguity: Prompt 1 avoids �ne-grained
distinctions between toxicity levels, reducing ambiguity in decision.

Table 2: Results for Toxicity Detection

Temperature Prompt Precision Recall F-measure
0.2 Prompt 1 0.49 0.94 0.64

Prompt 2 0.36 0.88 0.51
Prompt 3 0.33 0.78 0.48

0.7 Prompt 1 0.43 0.49 0.55
Prompt 2 0.35 0.89 0.50
Prompt 3 0.39 0.71 0.51

1.2 Prompt 1 0.41 0.80 0.54
Prompt 2 0.59 0.42 0.49
Prompt 3 0.29 0.86 0.43

We also notice that the choice of temperature can signi�cantly
in�uence the trade-o� between precision and recall in toxicity
detection. For our dataset, a temperature setting of 0.2 (lower tem-
perature values produce deterministic outputs) provided the best
results. More experiments are required to explore ChatGPT’s model
determinism.

3.2 Identifying Challenges in Toxic Comment
Detection

RQ2. What types of toxic comments are misclassi�ed or di�cult to
detect using ChatGPT?
In order to gain insight into the models’ mistakes, we conduct an
error analysis on the FPs and FNs for the overall best performing
con�guration (Temperature=0.2, Prompt=1). False Positives (FP) oc-
cur when the model incorrectly identi�es non-toxic comments as

toxic; False Negatives (FN) occur when the model fails to identify
toxic comments.

3.2.1 False Positives (FP): We observed a total of 100 FP instances,
re�ecting a low precision of 0.49. Our manual examination reveals
that the FP errors can be classi�ed into a few primary categories,
which are elaborated below:

Absence of Explicit O�ensive Language: Instances that do
not contain explicit o�ensive words or hate speech, typical indica-
tors of toxicity, are misinterpreted. One such example in our dataset
is, "Such a plugin already exists. And you chose to use a bleeding-edge
build with it removed. You have nobody to blame but yourself.".

Sarcasm and Irony: OpenAI API often encountered challenges
in accurately detecting �gurative language, such as sarcasm and
irony. For example, statements such as, “Really, thanks to you, I got
ruined the world of survival and now have to do the cleaning map",
containing sarcasm was misinterpreted.

Context-Dependent Toxicity: Toxicity often depends on the
context, and statements that seem non-toxic in isolation may be
perceived as toxic when considered within a broader context. Some
examples are, “I didn’t �le a bug for Fedora, people are aware that
Fedora is an unstable system and it is a test bed for RHEL." and “I
hava a 512m vps, I want to build some website on it..."

3.2.2 False Negatives (FN): We observed only 6 FN instances, re-
�ecting a high recall of 0.94. Our manual examination reveals that
most of the FN errors can be classi�ed into one broad category as
follows:

Nuanced Toxicity: ChatGPT faces challenges in detecting nu-
ances forms of toxicity, such as arrogance and passive-aggressiveness.
For example, a comment like, “As I said above... Issue 87 was a harm-
less use-after-free on shutdown, and nothing to do with this. I’ve
said my piece, and I can see it was a mistake trying to engage with
you, so I’m locking this thread," was misclassi�ed, despite exhibiting
arrogance.

3.2.3 Common errors in FP and FN: Across FPs and FNs, we ob-
served some common error patterns.

Lengthy Phrasing: One factor in�uencing both FP and FN
instances is the tokenization of text by OpenAI language models.
Languagemodels read andwrite text in chunks called tokens, where
a token can range from a single character to an entire word. For
example, the sentence "ChatGPT is great!" is encoded into six to-
kens: ["Chat", "G", "PT", " is", " great", "!"] [42]. This tokenization
process can occasionally lead to misunderstandings, particularly
when dealing with lengthy phrases or complex sentences.

Non-Responsive Answers: Another challenge arises when
the model fails to provide answers that align with our query. For
instance like, "@friend Done. Cached for , as spotted in Doctrine.
Is there any relevant di�erence?" the model responded with, "I’m
sorry, but I cannot provide a yes or no answer to this question as it
requires subjective analysis of the software engineering community
discussion," which indicating a failure in understanding the context
or intent of the question.

Labeling error: We observed 46 instances of human error in
labelling the dataset. These errors could be attributed to various
factors, including the subjective nature of human annotation and
possible misinterpretation of contextual cues. Additionally, some

ICSE 2024, April 2024, Lisbon, Portugal Shyamal Mishra and Preetha Cha�erjee

Table 3: Error Categories with Their Frequency (Temperature
0.2, Prompt=1)

Category Count
Labeling error 46
Absence of Explicit O�ensive Language 23
Sarcasm and Irony 16
Nuanced Toxicity 6
Non-Responsive Answer 6
Context-Dependent Toxicity 5
Lengthy Phrasing 4

comments can be interpreted as a retaliation to a previous toxic
comment (e.g., “Alright.... Nobody accused you ’falsely’ you clearly
were not respectful"), or more subtle forms of behavior such as enti-
tlement (e.g., “Maybe when I state that the values in the extractor
are correct, people should listen!!!"). Both examples were labeled
non-toxic by the annotators, but detected as toxic by ChatGPT.

4 Discussion and Implications
To determine the viability of ChatGPT for use by OSS communities
in combating toxicity, we explored two key factors: (a) model inter-
pretability, essential to provide meaningful insights and actionable
information; and (b) potential avenues for integrating ChatGPT
e�ectively into the software engineering work�ow.

4.1 Model Interpretability
Model interpretability revolves around our ability to understand
and explain the rationale behind the decisions made by ChatGPT.
In the context of combating toxicity within OSS communities, in-
terpretability ensures that the insights and information provided
by the model are not only accurate but also comprehensible. This
clarity empowers OSS practitioners to take informed actions and ad-
dress toxicity e�ectively. We used the same dataset to explore a few
prompts that could help us understand the classi�cation rationale.
Table 4 shows sample outputs of such justi�cations.

Table 4: Sample Prompt Outputs for Toxicity Justi�cation

Prompt: Examine whether the software engineering commu-
nity discussion includes toxicity. Please provide your answer in
yes/no with a short justi�cation.
Statement - you’re useless, please leave
ChatGPT Output: Yes. It includes personal attacks and a dis-
respectful tone.
Statement - Pardon my English @friend, what you wrote is
bullshit.
ChatGPT Output: Yes. The use of the word "bullshit" is o�en-
sive, which can contribute to a toxic environment.
Statement - I’ll report you too @friend, for all the internet to see
how disgusting and abusive you are
ChatGPT Output: Yes. The statement provided includes a
threat to publicly shame and report someone, which can be seen
as a form of toxicity. This kind of behavior is not constructive
and can create a hostile environment within the community.’

Figure 1: Bot Implementation for Paraphrasing Toxic Text

4.2 Integration into the Work�ow
We explored the potential of developer chats as platforms for in-
tegrating preemptive interventions, as they facilitate spontaneous
expression of emotions often not captured in other communica-
tion types [43–45]. Spec�cally, we integrated ChatGPT into Slack,
a popular chat platform, that would be able to automatically de-
tect toxic content, and when necessary, generate an alternative,
non-toxic version. This interface will detect harmful text, provide
users with real-time feedback on the tone of their message, and
suggestions to reframe their messages to convey positive and con-
structive intentions, as shown in Figure 1. Additional details on the
bot implementation is included in our replication package.

5 Conclusion and Future Work
In this paper, we presented an approach for automated toxicity
detection in software developer communication using a zero-shot
LLM, namely ChatGPT, through a prompting approach. We eval-
uated GPT-3.5 Turbo on a previously curated dataset of GitHub
issue comments, and observed promising preliminary results. We
explored several prompts for toxicity detection, including those that
outputs justi�cation of model outputs. This holds particular signif-
icance in building trust among software engineers, encouraging
their adoption and daily use of such systems in their work�ows. We
publish the source code and annotated dataset to facilitate the repli-
cation of our study at: https://anonymous.4open.science/r/open-
source-toxicity-0236/README.md.

There are several avenues for future work. First, our study fo-
cused only on one type of developer communication, i.e., issue
comments on GitHub. Future studies should evaluate our approach
on larger and more diverse datasets, such as code reviews or emails.
Second, further work on prompt engineering could potentially help
improve ChatGPT’s performance on toxicity detection in software-
related text. Third, there is a possibility of �ne-tuning language
models like GPT-3.5 Turbo on data speci�c to software developer
communities 1. Tailoring the model to the language and context
commonly used within these communities could potentially en-
hance the accuracy of toxicity detection. Overall, our study pro-
vides a starting point for future research to explore the potential
of ChatGPT in detecting toxicity or incivil language in software
engineering communication.

1https://platform.openai.com/docs/guides/�ne-tuning

Exploring ChatGPT for Toxicity Detection in GitHub ICSE 2024, April 2024, Lisbon, Portugal

References
[1] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu, “Stress and burnout

in open source: Toward �nding, understanding, and mitigating unhealthy
interactions,” in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: New Ideas and Emerging Results, ser. ICSE-NIER ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 57–60. [Online].
Available: https://doi.org/10.1145/3377816.3381732

[2] “What it feels like to be an open-source maintainer,” https://nolanlawson.com/
2017/03/05/what-it-feels-like-to-be-an-open-source-maintainer/, 2017, [Online;
accessed 2-Jun-2023].

[3] J. Lehnardt, “Sustainable Open Source: The Maintainers Perspec-
tive or: How I Learned to Stop Caring and Love Open Source,”
https://writing.jan.io/2017/03/06/sustainable-open-source-the-maintainers-
perspective-or-how-i-learned-to-stop-caring-and-love-open-source.html, 2017,
[Online; accessed 4-Jun-2023].

[4] C. Miller, S. Cohen, D. Klug, B. Vasilescu, and C. Kästner, ““did you miss my
comment or what?” understanding toxicity in open source discussions,” in 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE), 2022, pp.
710–722.

[5] I. Ferreira, J. Cheng, and B. Adams, “The “shut the f**k up" phenomenon:
Characterizing incivility in open source code review discussions,” vol. 5, pp.
1–35, 2021-10-13. [Online]. Available: http://arxiv.org/abs/2108.09905

[6] I. Ferreira, B. Adams, and J. Cheng, “How heated is it? understanding
GitHub locked issues,” in Proceedings of the 19th International Conference
on Mining Software Repositories, 2022-05-23, pp. 309–320. [Online]. Available:
http://arxiv.org/abs/2204.00155

[7] S. D. Gunawardena, P. Devine, I. Beaumont, L. P. Garden, E. Murphy-
Hill, and K. Blincoe, “Destructive Criticism in Software Code Review
Impacts Inclusion,” Proceedings of the ACM on Human-Computer Interaction,
vol. 6, no. CSCW2, pp. 292:1–292:29, Nov. 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3555183

[8] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger and Its
Direction in Collaborative Software Development,” in 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering: New Ideas and Emerging Technologies
Results Track (ICSE-NIER), May 2017, pp. 11–14.

[9] J. Cheriyan, B. T. R. Savarimuthu, and S. Crane�eld, “Towards o�ensive
language detection and reduction in four software engineering communities,” in
Evaluation and Assessment in Software Engineering, ser. EASE 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 254–259. [Online].
Available: https://doi.org/10.1145/3463274.3463805

[10] R. Ehsani, R. Rezapour, and P. Chatterjee, “Exploring Moral Principles Exhibited
in Software-related Text: A Case Study on GitHub Locked Issues,” in Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering: Ideas, Visions and Re�ections Track,
ser. FSE ’23, 2023.

[11] GitHub, “Open Source Survey,” https://opensourcesurvey.org/2017/, 2017, [On-
line; accessed 22-May-2023].

[12] C. D. Egelman, E. Murphy-Hill, E. Kammer, M. M. Hodges, C. Green, C. Jaspan,
and J. Lin, “Predicting developers’ negative feelings about code review,”
in Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. Association for Computing Machinery, 2020-10-01,
pp. 174–185. [Online]. Available: https://dl.acm.org/doi/10.1145/3377811.3380414

[13] H. S. Qiu, B. Vasilescu, C. Kästner, C. Egelman, C. Jaspan, and E. Murphy-Hill,
“Detecting interpersonal con�ict in issues and code review: cross pollinating
open- and closed-source approaches,” in Proceedings of the 2022 ACM/IEEE 44th
International Conference on Software Engineering: Software Engineering in Society,
ser. ICSE-SEIS ’22. Association for Computing Machinery, 2023-05-08, pp.
41–55. [Online]. Available: https://dl.acm.org/doi/10.1145/3510458.3513019

[14] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli, “Are
bullies more productive? empirical study of a�ectiveness vs. issue �xing time,”
in Proceedings of the 12th Working Conference on Mining Software Repositories,
ser. MSR ’15. IEEE Press, 2015, p. 303–313.

[15] G. Destefanis, M. Ortu, S. Counsell, S. Swift, M.Marchesi, and R. Tonelli, “Software
development: do good manners matter?” PeerJ Comput. Sci., vol. 2, p. e73, 2016.

[16] “GiHub Conversations Locking,” https://github.blog/2014-06-09-locking-
conversations/, 2014, [Online; accessed 7-Jun-2023].

[17] I. Ferreira, A. Ra�q, and J. Cheng, “Incivility detection in open source
code review and issue discussions,” 2022-07-07. [Online]. Available: https:
//papers.ssrn.com/abstract=4156317

[18] J. Sarker, A. K. Turzo, M. Dong, and A. Bosu, “Automated identi�cation of toxic
code reviews using toxicr,” ACM Trans. Softw. Eng. Methodol., feb 2023, just
Accepted. [Online]. Available: https://doi.org/10.1145/3583562

[19] J. Sarker, A. K. Turzo, and A. Bosu, “A benchmark study of the contemporary
toxicity detectors on software engineering interactions,” no. arXiv:2009.09331,
2020-09-19. [Online]. Available: http://arxiv.org/abs/2009.09331

[20] M. M. Imran, Y. Jain, P. Chatterjee, and K. Damevski, “Data augmentation for
improving emotion recognition in software engineering communication,” in 37th

IEEE/ACM International Conference on Automated Software Engineering, 2022.
[21] H. Batra, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Bert-based sentiment

analysis: A software engineering perspective,” in International Conference on
DEXA, 2021.

[22] E. Biswas, M. E. Karabulut, L. Pollock, and K. Vijay-Shanker, “Achieving reliable
sentiment analysis in the software engineering domain using bert,” in 2020 IEEE
ICSME, 2020.

[23] R. Kamath, A. Ghoshal, S. Eswaran, and P. B. Honnavalli, “Emoroberta: An en-
hanced emotion detection model using roberta,” in IEEE International Conference
on Electronics, Computing and Communication Technologies, 2022.

[24] C. Liu, M. Osama, and A. De Andrade, “Dens: A dataset for multi-class emotion
analysis,” in Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019, pp. 6293–6298.

[25] S. Kabir, D. N. Udo-Imeh, B. Kou, and T. Zhang, “Who answers it better? an
in-depth analysis of chatgpt and stack over�ow answers to software engineering
questions,” 2023.

[26] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, and
H. Wang, “Large language models for software engineering: A systematic litera-
ture review,” 2023.

[27] W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing, “Sentiment analysis in the era
of large language models: A reality check,” 2023.

[28] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, and J. M.
Zhang, “Large language models for software engineering: Survey and open
problems,” 2023.

[29] S. Jalil, S. Ra�, T. D. LaToza, K. Moran, andW. Lam, “Chatgpt and software testing
education: Promises & perils,” in 2023 IEEE International Conference on Software
Testing, Veri�cation and Validation Workshops (ICSTW), 2023, pp. 4130–4137.

[30] F. Huang, H. Kwak, and J. An, “Is chatgpt better than human annotators?
potential and limitations of chatgpt in explaining implicit hate speech,” in
Companion Proceedings of the ACM Web Conference 2023, ser. WWW ’23. ACM,
Apr. 2023. [Online]. Available: http://dx.doi.org/10.1145/3543873.3587368

[31] L. Li, L. Fan, S. Atreja, and L. Hemphill, “"hot" chatgpt: The promise of chatgpt in
detecting and discriminating hateful, o�ensive, and toxic comments on social
media,” 2023.

[32] X. He, S. Zannettou, Y. Shen, and Y. Zhang, “You only prompt once: On the
capabilities of prompt learning on large language models to tackle toxic content,”
2023.

[33] C. Ziems, W. Held, O. Shaikh, J. Chen, Z. Zhang, and D. Yang, “Can large language
models transform computational social science?” 2023.

[34] OpenAI, “Chatgpt,” https://openai.com/blog/chatgpt, 2023.
[35] K. Stowe, P. Utama, and I. Gurevych, “Impli: Investigating nli models’ perfor-

mance on �gurative language,” in Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, 2022.

[36] J. Zhou, H. Gong, and S. Bhat, “Pie: A parallel idiomatic expression corpus
for idiomatic sentence generation and paraphrasing,” in Proceedings of the 17th
Workshop on Multiword Expressions (MWE 2021), 2021.

[37] H. Haagsma, J. Bos, and M. Nissim, “Magpie: A large corpus of potentially id-
iomatic expressions,” in Proceedings of The 12th Language Resources and Evaluation
Conference, 2020.

[38] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-
Smith, and D. C. Schmidt, “A prompt pattern catalog to enhance prompt engi-
neering with chatgpt,” 2023.

[39] Conversationai. (n.d.) GitHub. [Online]. Available: https://github.
com/conversationai/conversationai.github.io/blob/main/crowdsourcing_
annotation_schemes/toxicity_with_subattributes.md

[40] S. Ouyang, J. M. Zhang, M. Harman, andM.Wang, “Llm is like a box of chocolates:
the non-determinism of chatgpt in code generation,” 2023.

[41] O. Platform. (n.d.). [Online]. Available: https://platform.openai.com/docs/guides/
gpt/managing-tokens

[42] OpenAI. (n.d.) Managing tokens. OpenAI Documentation. [Online]. Available:
https://platform.openai.com/docs/guides/gpt/managing-tokens

[43] P. Chatterjee, K. Damevski, and L. Pollock, “Automatic extraction of opinion-
based Q&A from online developer chats,” in Proceedings of the 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), 2021, pp. 1260–1272.

[44] M. Kuutila, M. Mäntylä, and M. Claes, “Chat activity is a better predictor than
chat sentiment on software developers productivity,” Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, 2020.

[45] B. T. R. Savarimuthu, Z. Zareen, J. Cheriyan, M. Yasir, and M. Galster, “Barriers
for social inclusion in online software engineering communities - a study of
o�ensive language use in gitter projects,” in Proceedings of the 27th International
Conference on Evaluation and Assessment in Software Engineering, ser. EASE ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p. 217–222.
[Online]. Available: https://doi.org/10.1145/3593434.3593463

