
Towards Detecting Prompt Knowledge Gaps for
Improved LLM-guided Issue Resolution

Ramtin Ehsani
Drexel University

Philadelphia, PA, USA
ramtin.ehsani@drexel.edu

Sakshi Pathak
Drexel University

Philadelphia, PA, USA
sp3856@drexel.edu

Preetha Chatterjee
Drexel University

Philadelphia, PA, USA
preetha.chatterjee@drexel.edu

Abstract—Large language models (LLMs) have become es-
sential in software development, especially for issue resolution.
However, despite their widespread use, significant challenges
persist in the quality of LLM responses to issue resolution
queries. LLM interactions often yield incorrect, incomplete, or
ambiguous information, largely due to knowledge gaps in prompt
design, which can lead to unproductive exchanges and reduced
developer productivity.

In this paper, we analyze 433 developer-ChatGPT conver-
sations within GitHub issue threads to examine the impact
of prompt knowledge gaps and conversation styles on issue
resolution. We identify four main knowledge gaps in devel-
oper prompts: Missing Context, Missing Specifications, Multiple
Context, and Unclear Instructions. Assuming that conversations
within closed issues contributed to successful resolutions while
those in open issues did not, we find that ineffective conversations
contain knowledge gaps in 54.7% of prompts, compared to only
13.2% in effective ones. Additionally, we observe seven distinct
conversational styles, with Directive Prompting, Chain of Thought,
and Responsive Feedback being the most prevalent. We find that
knowledge gaps are present in all styles of conversations, with
Missing Context being the most repeated challenge developers
face in issue-resolution conversations.

Based on our analysis, we identify key textual and code-related
heuristics—Specificity, Contextual Richness, and Clarity—that are
associated with successful issue closure and help assess prompt
quality. These heuristics lay the foundation for an automated tool
that can dynamically flag unclear prompts and suggest structured
improvements. To test feasibility, we developed a lightweight
browser extension prototype for detecting prompt gaps, that can
be easily adapted to other tools within developer workflows.

Index Terms—issue resolution, large language models, prompt
quality

I. INTRODUCTION

Large language models such as ChatGPT, Gemini, and
Claude have become crucial tools for software development.
The 2023 JetBrains survey, which gathered responses from
26k developers across 196 countries, 77% (i.e., three out of
four developers) use ChatGPT for daily tasks [1]. LLMs are
transforming the way developers approach problem-solving,
particularly in issue resolution [2], [3]. Developers seek guid-
ance from these models to troubleshoot and refine solutions.
By providing real-time feedback, helping to debug, and accel-
erating problem-solving, LLMs have become integral to the
issue resolution process [4], [5].

Despite their popularity, several concerns remain regard-
ing the quality of LLM responses to issue resolution-related

queries. Recent studies have shown that these interactions of-
ten yield incomplete, ambiguous, or incorrect information [6]–
[9]. LLM responses are highly sensitive to the information
provided in the prompts [10], [11]. Therefore, prompt knowl-
edge gaps (e.g., missing context, unclear instructions) play a
critical role in shaping these interactions. These gaps can lead
to irrelevant responses or even hallucinations [7]. Knowledge
gaps in prompt design also lead to multiple back-and-forth
interactions, resulting in unsuccessful conversational outcomes
and decreased developer productivity [12]. These challenges
highlight the need for a deeper understanding of how prompt
gaps and styles affect LLM-driven issue resolution.

Previous research has examined gaps in developer-LLM
conversations across different software engineering tasks, iden-
tifying factors that prolong conversations and require multiple
prompts for developers to obtain helpful responses [11], [13],
[14]. However, these studies do not identify the unique chal-
lenges and knowledge gaps specific to issue resolution, such
as the need for precise problem descriptions and detailed error
messages. A recent study analyzing 85 ChatGPT conversations
related to issue resolution reveals 11 types of gaps in both
developer prompts and ChatGPT’s responses that contribute to
longer exchanges [7]. Despite these findings, existing research
has yet to systematically examine how knowledge gaps in
developer prompts impact the effectiveness of LLM-driven
issue resolution. While prompt engineering methods aim to
refine LLM responses by optimizing phrasing, structure, and
style [13], they often fail to address a deeper challenge:
providing actionable, targeted guidance that empowers devel-
opers to create more effective prompts. As a result, effective
issue resolution still heavily depends on developers’ ability
to identify the knowledge gap, and incorporate the necessary
information in the prompts.

In this paper, we analyze 433 developer-ChatGPT conver-
sations shared within GitHub issue threads to investigate the
impact of prompt knowledge gaps and conversation styles
on issue resolution. We focus on knowledge gaps, such as
identifying missing or ambiguous content, that impact the
effectiveness of developer-LLM discussions related to issue
resolution. By identifying key textual and code-related heuris-
tics that are related to these gaps, we explore patterns in
conversations that are associated with successful issue closure
on GitHub. Our objective is to identify actionable heuristics

that can inform the design of a tool to dynamically flag unclear
or incomplete prompts, and suggest improvements in the form
of structured templates. Toward that goal, we investigate the
following research questions:
RQ1: How do prompt knowledge gaps and conversation
styles influence the progression and effectiveness of developer-
ChatGPT conversations in issue resolution? We annotate
each developer-ChatGPT conversation with four categories
of knowledge gaps and seven styles of conversations. By
analyzing the content and discourse of each conversation, we
investigate their influence on the GitHub issue status (open
vs. closed). We find that developers use different styles and
techniques such as Chain of Thought and Directive Prompting
to interact with ChatGPT, however, knowledge gaps persist
across all styles. Developers struggle with providing the right
context, with Missing Context emerging as the most common
issue associated with unsuccessful conversations.
RQ2: What heuristics can be used to automatically measure
the prompt knowledge gaps? Based on the results of RQ1, we
design three categories of textual and code-related heuristics
(Contextual Richness, Specificity, and Clarity) that capture the
nuances of knowledge gaps in prompts when using ChatGPT
for issue resolution. We found that providing short code snip-
pets, additional information such as links to documentation,
and error messages in the prompt, while maintaining the
conversation on the same topic can lead to more effective issue
resolution conversations. These heuristics provide a foundation
for designing tools for automatic detection of prompt gaps.

To demonstrate the feasibility of using our RQ2 heuristics
in an automated tool, we develop a lightweight prototype.
Implemented as a browser extension, this prototype can be
adapted to other tools within developer workflows. Our work
takes the first step towards automated prompt knowledge
gap detection in LLM-aided issue-resolution conversations.
By providing targeted, actionable suggestions, this tool could
help developers proactively enhance prompt quality. The key
contributions in this paper are summarized as follows:
• We present a manually annotated dataset of developer-

ChatGPT conversations focused on issue resolution, with
annotations for prompt styles and knowledge gaps as the
conversation progresses.

• We conduct a comprehensive analysis of these conversa-
tions, identifying common knowledge gaps and styles, and
uncovering key heuristics that are strongly associated with
the effectiveness of the interactions towards issue resolution.

• We develop the first prototype for automatically detecting
knowledge gaps in prompts during ChatGPT-based issue
resolution, offering tailored templates to improve prompt
quality and enhance the likelihood of successful outcomes.

II. DATASET

We use the DevGPT dataset [15] for our analysis. This
dataset contains developer-ChatGPT conversations that are
publicly shared through links on platforms such as GitHub
and Hackernews. These conversations are generated using
OpenAI’s web-browser platform of ChatGPT, which utilizes

either GPT-3.5 or GPT-4. Since the focus of our study is issue
resolution, we selected conversations shared within GitHub
issue threads. These conversations contain a wide variety
of queries directed at ChatGPT, including how-to questions,
advanced programming guidance, inquiries about frameworks,
and high-level design recommendations. [12], [16], [17]. The
conversations in this dataset often serve as references for
potential solutions or helpful context [12], and they are in-
herently related to the issues because developers intentionally
share them as resources they believe might assist in resolving
the problem. We further analyzed the dataset and observed
that the queries and subtasks presented to ChatGPT vary
from straightforward ones such as API usage and syntax
fixes to more complex debugging and multi-threading issues.
Simpler tasks required fewer interactions and were resolved
more effectively, while complex ones were more challenging.
For example, resolving syntax errors like “How do I fix a
syntax error in Python?” was far more straightforward than
diagnosing a segmentation fault in C. While task difficulty im-
pacts ChatGPT’s performance, our focus remains on assessing
how providing sufficient detail within prompts influences issue
resolution regardless of the difficulty of issues. In addition, the
diversity of subtasks covered in these conversations allows us
to generalize our findings to a wide range of issue-resolution
challenges.

Each dataset entry contains the ChatGPT link, the associated
GitHub issue, the full conversation comprising each prompt
and its corresponding ChatGPT response, and the saved
HTML content of the conversation. The original dataset con-
sists of 636 entries. We filtered out duplicate entries and non-
English conversations using Python’s lingua-py library [18].
Code snippets and error messages were replaced with [CODE]
and [ERROR] tags, respectively, and separated from the text.
ChatGPT responses structure code snippets in quote blocks,
allowing for easy replacement using RegEx, while developer
prompts often do not. Following previous studies, to detect
unstructured code and error messages in prompts, we used
GPT-4 [19]. One of the authors manually validated the dataset
to ensure accuracy. Our final dataset comprises 433 developer-
ChatGPT conversations shared within 400 unique GitHub
issues.

III. METHODOLOGY

A. RQ1: How do prompt knowledge gaps and conversation
styles influence the progression and effectiveness of developer-
ChatGPT conversations in issue resolution?

We annotate 433 developer-ChatGPT conversations, fo-
cusing on two main aspects: prompt knowledge gaps (i.e.,
deficiencies in the content of prompts) and conversation styles
(i.e., the techniques developers used to communicate with
ChatGPT). By annotating the dataset according to these two
aspects, we assess how knowledge gaps and conversation
styles contribute to the effectiveness of issue resolution. We as-
sume that conversations within closed issues likely contributed
to successful resolutions, while those within open issues did
not effectively aid in resolving the issues. This approach is the

best available option for evaluating the relationship between
prompt knowledge and issue resolution. Our study focuses
on understanding how prompt quality is associated with the
likelihood of issue resolution. Given this, the status of the
issue (open or closed) provides a direct and practical measure
of effectiveness.

We followed a qualitative content analysis approach [20],
combining both deductive and inductive coding methods.
We began with a set of predefined categories for prompt
knowledge gaps and conversation styles, derived from existing
taxonomies and literature. Using this strategy, two authors
of this paper independently annotated an initial subset of
conversations to capture prompt gaps and conversation styles.
Through iterative coding and discussion, we refined the cat-
egories, leading to the creation of modified taxonomies for
both prompt knowledge gaps and conversation styles for issue
resolution. This inductive refinement allowed us to adapt
our categories based on observed data patterns, enhancing
the validity of our coding scheme. To ensure reliability, we
calculated Cohen’s Kappa scores at each stage, achieving
strong inter-rater reliability in the final round, and further
validated our consistency through a blinded sample check.
Next, we discuss the evolution of the taxonomy and further
details on the annotation procedure.

To identify the prompt knowledge gaps, we started with
Mondal et al.’s prompt gap taxonomy consisting of a to-
tal of 11 categories: Missing Specifications, Different Use
Cases, Incremental Problem Solving, Exploring Alternative
Approaches, Wordy Response, Additional Functionality, Er-
roneous Response, Missing Context, Clarity of Generated
Response, Inaccurate/Untrustworthy Response, and Miscel-
laneous [7]. To identify the conversation styles, we started
with 18 categories: Meta Language Creation, Output Automa-
tor, Persona, Visualization Generator, Template, Skeleton of
Thought, Chain of Thought, Tree of Thought, Fact Check List,
Meta-prompting, Reflection, Responsive Feedback, Question
Refinement, Alternative Approaches, Cognitive Verifier, Re-
fusal Breaker, Game Play, and Few-shot Learning, drawn from
the literature on interaction styles with LLMs [21]–[23]. Two
authors independently reviewed an initial set of 50 ChatGPT
conversations. We annotated the first prompt in each conversa-
tion to capture its initial gaps, while subsequent prompts were
annotated based on new information the developers provided,
allowing us to observe how knowledge gaps evolved through
the conversation. After identifying prompt knowledge gaps,
each conversation was categorized with a conversation style
that reflected the overall interaction across all prompts. The
inter-rater agreement for the first round of annotations was
Cohen’s Kappa of 0.62 for gaps and 0.48 for styles, indicating
moderate agreement [24]. In the second round of annotation,
the authors revisited the initial 50 conversations along with 50
additional ones. The final Cohen’s Kappa agreement was 0.84
for gaps and 0.72 for styles, both reflecting strong inter-rater
reliability [24]. Conflicts in the annotations were iteratively
discussed and resolved collaboratively with both annotators
contributing equally, leading to a refinement of the initial

categories. Since, we had high inter-rater agreement after the
second iteration, the rest of the dataset was split among the
two researchers to complete the annotation independently.

Based on our iterative discussions, for conversation styles
seven categories were discarded because they were not present
in our dataset. These categories were Meta Language Cre-
ation, Output Automator, Visualization Generator, Fact Check
List, Cognitive Verifier, Refusal Breaker, and Game Play. In
addition, eight categories were merged into three categories
because they represented the same style: Responsive Feed-
back, Meta-prompting, Reflection, Question Refinement into
Responsive Feedback; Template and Skeleton of Thought into
Template; and Tree of Thought and Alternative Approaches
into Tree of Thought. The final set included six categories,
plus one additional style (Directive Prompting) derived from
our coding. The prompt knowledge gaps were consolidated
into three main categories, with an additional gap (Unclear
Instructions) emerging from our open coding process [25].
The categories discarded for prompt knowledge gaps were
Different Use Cases, Incremental Problem Solving, Exploring
Alternative Approaches, Wordy Response, Additional Func-
tionality, Erroneous Response, Clarity of Generated Response,
and Inaccurate/Untrustworthy Response.

Additionally, to ensure our annotations were not biased
based on conversations’ status (open vs. closed), we sampled
50 conversations after the annotation, hiding their status and
redoing the annotation to see if we identified different gaps or
styles in the conversations. In only 4 conversations (1 open and
3 closed) we identified additional gaps in prompts indicating
that our annotations were consistent.

We now present the refined taxonomies.
Prompt Knowledge Gap Categories: As summarized in
Table I, we categorize prompt knowledge gaps into four
groups: Missing Context, Missing Specification, Unclear
Instruction, and Multiple Context. These gaps are essential for
evaluating whether the developer provided enough information
and clarity for ChatGPT to understand and resolve the issue.

TABLE I: Prompt Knowledge Gaps in Developer-ChatGPT Conversations

Category Description
Missing Context Lacks essential details, such as goals, pre-

vious attempts, or project info.
Multiple Context Introduces multiple issues without clear sep-

aration, leading to confusion.
Unclear Instructions Instructions are vague or open to multi-

ple interpretations, leading to ineffective re-
sponses.

Missing Specification Lacks critical technical information (e.g.,
programming language).

Context refers to the background information that develop-
ers provide to help ChatGPT understand the problem. We
identified gaps in context by looking for prompts that lacked
sufficient background information. A prompt was labeled as
Missing Context if it did not provide essential details like
the user’s end goals, prior attempts to solve the issue, codes
and error logs, or relevant project information [26]. On the
other hand, a prompt was classified as Multiple Context

when it introduced more than one distinct issue in the same
conversation thread. This often leads to confusion in responses,
as ChatGPT struggles to focus on one problem.
Instructions refer to the explicit steps or actions that devel-
opers want ChatGPT to perform. Unambiguous instructions
are crucial for obtaining relevant and accurate responses. We
analyzed prompts to identify instances where the instructions
provided were unclear or open to multiple interpretations.
Unclear instructions with grammatical issues, misspellings, or
anything that hinders the understanding of the instruction is
classified as Unclear Instructions. One such example is:“noe
to how to run all togathor and display in website”.
Specification relates to the technical details and system re-
quirements specific to the issue. Effective prompts should
contain enough technical information, such as exact program-
ming language, performance constraints, or versions of the
frameworks to guide ChatGPT in generating precise solutions.
We categorized prompts as having a Missing Specification
gap if they lacked essential technical details necessary for
providing a meaningful solution.

Conversation Style Categories: We identified seven conver-
sation styles as follows: Persona, Template, Chain of Thought,
Tree of Thought, Responsive Feedback, Few-shot Learning,
and Directive Prompting.
Persona is a style where developers instruct ChatGPT to
assume a specific role or perspective. By asking ChatGPT to
“act as a cybersecurity expert” or “explain this as a mentor
would,” developers can tailor responses to align with their
specific needs. This style is particularly useful when the
developer requires expert-level advice or wants the response
framed in a particular way [21].
Template is a style where developers provide a predefined
structure for ChatGPT to follow in its output. Developers often
use this style when they need the response to adhere to a
specific format, such as a documentation template or structured
report. By giving ChatGPT a template to follow, developers
ensure consistency in responses, particularly when the output
must follow a standardized format [21].
Chain of Thought breaks down complex tasks into logical,
sequential steps. Instead of asking ChatGPT for an immediate
solution, the developer prompts the model to think through
the problem step by step. This style is especially effective for
multifaceted problems where each step needs to be carefully
considered [22], [23].
Tree of Thought expands on the Chain of Thought approach
by encouraging ChatGPT to explore multiple possible solu-
tions or pathways. In situations where there is more than
one potential solution, this style allows developers to prompt
ChatGPT to branch out and explore various scenarios or
alternative strategies [22], [23].
Responsive Feedback is a style where developers provide
feedback directly within the prompting process to refine
ChatGPT’s responses. For example, after receiving an initial
output, the developer might give feedback such as “I like
this part, but can you make it simpler?” This allows for

iterative improvements and dynamic interaction, leading to
more refined and tailored responses [21], [22].
Few-shot Learning is when developers provide a few exam-
ples within the prompt to illustrate their request. By including
these examples, developers can help ChatGPT better under-
stand the task and generate responses that align with their
expectations [22], [23].
Directive Prompting is a style where we identified developers
provide goals and the scope of issues to direct ChatGPT toward
a specific outcome. This style is straightforward with devel-
opers knowing what they exactly want, which helps reduce
ambiguity and ensures that the conversation stays focused on
the desired solution.

B. RQ2: What heuristics can be used to automatically mea-
sure the prompt knowledge gaps?

Based on the results of RQ1 and further analysis of the
content of developer prompts, we design three categories of
heuristics: Specificity, Contextual Richness, and Clarity (see
Table II). These heuristics are coming from our analysis of
what constitutes knowledge gaps in developer prompts and
were derived using NLP and code-related metrics to directly
correspond to the knowledge gaps identified in prompts.
Contextual Richness helps identify Missing Context and Mul-
tiple Context by measuring the inclusion of code, external
references, error messages, and other necessary information
that developers may overlook. Specificity addresses Missing
Specification by evaluating if the prompt contains enough tech-
nical details to frame the developers’ requests. Finally, Clarity
tackles Unclear Instructions by analyzing how cohesively
instructions are structured, aiming to detect any ambiguous
language that could lead to misunderstandings.

Additionally, to assess the impact of these heuristics on the
effectiveness of issue resolution, we quantitatively evaluate
them across conversations from open and closed issues using
logistic regression models. This approach allows us to explore
how these three heuristics are associated with successful
outcomes, i.e., closed issues.

1) Specificity: Specificity assesses the degree of detail in
a developer’s prompts, focusing on how thoroughly technical
requirements and specific requests are communicated. High
specificity, such as indicating the programming language,
library, or version, allows ChatGPT to better understand the
problem and produce more accurate, relevant responses. We
measure Specificity through three categories: Technical Key-
words, Conditional Phrasing, Information Emphasis.

Technical Keywords: Inclusion of specific technical terms
or commands can clarify the task and narrow the focus of the
response. This could help ChatGPT align its output closely
with the developer’s needs. We use two metrics: the frequency
of software-specific terms, and named entities. We calculate
the #Software-specific Terms using a pre-compiled list of
morphological terms and software-related terms [27], [28]. For
#Named Entities we use Python’s NLTK package [29].

Conditional Phrasing: This metric evaluates how devel-
opers structure prompts to clarify task-specific requirements.

Help me design some for that supports the
following. 

Rotations are a key component of attitude and orientation
parameters. At first, only supports [...] of
this issue is to design and implement [...] 

+ Wikipedia on
+ [...] 

1. Rotation structures shall be composable
 1. Composition between different representations shall be
supported 
 2. [...]

rust code no-std

ANISE
a _correct_ SO(3)

High level description 

The purpose

Some useful resources: 
SO(3)(URL) 

Requirements 
(URL) 

Right. Let's ignore interpolation using SLERP because [...]  

Certainly! Below is a ... [Code]

[Final Code]

Issue Closed as Completed on Sep 8, 2023

...

...

I am writing a Python library that needs to be
suspend aware. How can I arrange for my code
to receive a notification when it is resumed from
a suspended state (e.g. the machine had gone
to sleep)?

I think it's unreasonable to ask users to install d-
bus just for this [...]

To make your Python library suspendaware [...]

Using timerfd is a reasonable approach [...]

Issue Still Open

the Python documentation does not contain
any references to os.timerfd_create though.
Are you sure this really exists?

I apologize for the confusion in my previous
response. os.timerfd_create is not a valid
function [...]

...

...

Missing
(E.g., What is the

code? What does the
library do?)

ContextRight amount
of and Context
Specifications

Modifications to
Code with

Details

Still No Context of
the Library in

Question

Hallucination of
Non-Existent

Function

Fig. 1: Example of Open vs. Closed Conversations: Closed conversation provides Context and Specifications to ChatGPT vs. the missing Context in open
conversation lead ChatGPT to hallucinate.

We calculate the frequency of #Constraints, #Modifiers, and
#Subordinate Clauses using Python’s NLTK. For instance,
Subordinate Clauses introduce additional details or conditions
that refine the request (e.g., “if the library is compatible with
Python 3.8”).

Information Emphasis: This metric captures how developers
use repetition to maintain focus on key points. To capture this,
we measure #Repeated N-grams (n=2, 3) within the prompts
to identify instances where developers reinforce important
information.

2) Contextual Richness: We assess how much contex-
tual and background information developers provide in their
prompts, as this is crucial for ChatGPT to understand the issue
at hand. Capturing contextual richness in the text is challeng-
ing since it varies widely depending on the problem [30]. We
categorize it into four key categories: Information Density,
Code Elements, References, and Verbosity.

Information Density: The more unique and concentrated the
information, the richer the context [31]. We measure this by
calculating #Unique Words in the prompt and the ratio of
distinct words to the total word count (#Unique Info).

Code Elements: Concrete artifacts, such as code snippets
and error messages, add substantial context. We measure this
using the number of #Code Snippets, #Error Message, and
Mean Size Code Snippets included in the prompts. To measure
#Code descriptions, we tokenize the code identifiers from the
code snippets in each conversation and count the sentences
mentioning these tokens [31], [32].

References: Referring to APIs or URLs that are relevant to
the issue could provide additional context and knowledge to
understand the problem. We use regular expressions to count
#URLs within the prompt.

Verbosity: Verbosity reflects the extent to which developers
elaborate on the problem. Using Python’s package spaCy [33],

we calculate the total number of prompts in a conversation,
and measure the #Words and #Sentences.

3) Clarity: Unclear prompts are those that are vague,
ambiguous, or open to multiple interpretations. Prompts must
be clear enough for ChatGPT to accurately interpret them.
To assess the clarity of prompts, we use two categories:
Readability and Ambiguity.

Readability: We evaluate how easily the information can be
read and understood. First, using Python’s pyspellchecker [34],
we count the number of misspelled words (#Misspellings).
Using Python’s spaCy [33], we identify incomplete sentences
lacking a subject or object as #Incomplete Sentences [31].
Additionally, we compute two widely recognized readability
metrics: the Flesch Reading Ease Score [35] and the SMOG
Grade [36]. The Flesch score gauges how easy a text is to read,
with higher scores indicating simpler content. The SMOG
Grade estimates the years of education needed to understand a
text. We calculate both using Python’s py-readability-metrics
package.

Ambiguity: To assess ambiguity, we analyze the #Unre-
solved References in prompts, focusing on instances of unclear
pronoun usage. Using spaCy’s NeuralCoref [33], we identify
cases where pronouns lack a clear antecedent. Additionally,
we use Natural Language Inference (NLI) to capture deeper
contextual confusion. Using the RoBERTa-MNLI model [37],
we measure how confidently it classifies relationships between
sentences. This model generates an Entailment score (higher
means less ambiguous), indicating if the text logically follows
the context.

TABLE II: Heuristics to Capture Knowledge Gaps in Prompts and their Range in Conversations of Open and Closed Issues

Knowledge
Gaps Heuristic Heuristic Categories Metrics Open Issues Closed Issues

Range (min<median<max) Range (min<median<max)
Missing

Specification Specificity Technical Keywords #Software-specific Terms
#Named Entities

0<8<289
0<2<635

0<8<185
0<2<91

Conditional Phrasing
#Constraints
#Modifiers
#Subordinate Clauses

0<0<13
0<6<693
0<0<31

0<0<26
0<6<351
0<0<49

Information Emphasis #Repeated 2-grams
#Repeated 3-grams

0<2<530
0<0<307

0<1<270
0<0<176

Missing
Context Contextual Richness Code Elements

#Code Snippets
Mean Size Code Snippets
#Error Message
#Code Descriptions

0<0<108
0<0<9257
0<0<47

0<0<669

0<0<77
0<0<3493
0<0<34
0<0<94

Information Density
First Prompt Length
#Unique Info
#Unique Words

1<41<2297
2<11<56

3<39<1247

5<40<1727
1<11<96
1<38<598

Multiple
Context References #URLs 0<0<16 0<0<10

Verbosity
#Words
#Sentences
#Total Prompt Count

4<54<4837
1<3<299
1<2<42

1<53<2490
1<3<146
1<2<30

Unclear
Instructions Clarity Readability

#Misspellings
#Incomplete Sentences
Flesch Reading Ease Score
SMOG Grade

0<1<92
0<0<97

-44.2<66.7<102.6
0<7<17

0<1<14
0<0<50

-155.5<68.3<117.1
0<7<19

Ambiguity #Unresolved Reference
Entailment

0<3<138
0.001<0.10<0.98

0<3<199
0.002<0.10<0.97

IV. RESULTS AND DISCUSSION

A. RQ1: How do prompt knowledge gaps and conversation
styles influence the progression and effectiveness of developer-
ChatGPT conversations in issue resolution?

Out of 433 conversations, 262 were linked within closed
issues while 171 were related to open issues. In total, open
issues had 749 prompts, while closed issues had 849 prompts.
Although there are more conversations in closed issues, open
issues had a higher average number of prompts per conversa-
tion. This suggests that conversations in open issues tend to
take longer to reach a solution.

Figure 2 shows the frequency of the seven conversation
styles across open and closed issues. The predominant styles of
conversation in both open and closed issue threads were Direc-
tive Prompting, Chain of Thought, and Responsive Feedback.
Given the large sample size, we applied the independent t-
test [38] (p-value<0.05), which is robust to minor deviations
from normality. The t-test showed no significant difference
in the styles employed across open and closed issues (p-
value=0.48), indicating that developers maintain a consistent
approach when framing their questions for issue resolution.
We also conducted the Shapiro-Wilk test [39] to confirm that
the data follows a normal distribution. Additionally, the Mann-
Whitney U test [40] (p-value<0.05) showed no significant
differences either (p-value=0.84). Few-shot Learning style
of conversation was only noticed in open issues. This ap-
proach involved providing examples for ChatGPT to learn and
generate relevant responses. For example, in a conversation
about adding JSP support programmatically to the code, the
developer provided an example of what a code with this
support might look like.

We found a significant difference in the number of prompts
with knowledge gaps: 410 in open issues compared to only

Fig. 2: Styles of Conversations in Closed Vs. Open Issues

112 in closed ones. In open issues, the most common gap
is Missing Context (n=262), followed by Unclear Instructions
(n=66), Multiple Context (n=45), and Missing Specification
(n=37). In closed issues, 742 of 849 prompts showed no gaps,
but Missing Context (n=77) remained the most frequent gap.

Providing the right context for an issue is the biggest
challenge developers face when interacting with ChatGPT. We
observed numerous cases where ChatGPT struggled to grasp
the necessary context due to Missing Context. For example,
Figure 1 shows a conversation within an open issue where a
developer asked ChatGPT how to make their Python library
suspend-aware. However, they did not provide enough details
about the library’s functionality, the framework it was built on,
and other critical information that was necessary to generate
the correct answer. This resulted in ChatGPT hallucinating
and using non-existent functions to compensate for the lack
of information, leading to unhelpful answers to the developer’s
questions. Additionally, we observe that Missing context is a
critical issue in all styles of open-issue conversations, showing
that no matter what style developers use, the problem of
providing the right context still persists.

Table III shows the number and percentage of gaps per

1 Message

6 Messages

How to put python code in website

How to run python file in html

Image Inversion Error

How to create Flask Server

Fig. 3: Multiple Context in a Conversation Linked to an Open Issue

conversation style for both open and closed issues. Since
closed issues have a higher total prompt count, the higher
number of knowledge gaps within each category for open
issues result in higher percentages. Almost all conversation
styles in open issues exhibit at least one type of gap, with
Chain of Thought showing the highest number of gaps across
all identified categories. Conversations adopting Chain of
Thought prompting in closed conversations do not exhibit the
gap of Multiple Context (n=0), indicating that developers focus
each discussion with ChatGPT on a single topic. However, in
open issues, conversations with Chain of Thought prompting
frequently suffer from Multiple Context (n=43). In these
conversations, developers often discuss their problems step by
step, but unexpectedly shift the topic to something unrelated.
For instance, as shown in Figure 3, problems such as embed-
ding Python code in a website, running Python within HTML,
and creating a Flask server are presented in one conversation
thread. Changes in topics within the same conversation thread
create confusion and lead to unclear assistance from ChatGPT.

The other two conversation styles that are most influenced
by prompt knowledge gaps across open and closed issues are
Directive Prompting and Responsive Feedback. Overall, in
closed issues, Directive Prompting is the style most affected by
knowledge gaps, as it often lacks the context and background
information needed to resolve complex issues. One other
important difference between open and closed issues is the
use of Responsive Feedback. We see noticeably fewer prompts
with missing context in closed issues for this style. When
providing feedback to ChatGPT, it is important to assess
what ChatGPT is struggling with the most, and incorporate
more context and information on the problem to get better
answers from ChatGPT. For instance, in a conversation linked
to a closed issue, a developer was trying to get help with
writing code for SQLite database in Python to merge rows
from different tables. After the first attempt, the developer
was not satisfied with the answer provided by ChatGPT, but
received the required answer at the next prompt by providing
the schema in more detail: “[...]This is the table scheme of
favorites: CREATE TABLE favorites[...]”.

Given that knowledge gaps are a problem in both open
and closed issues—less in closed compared to open—we also
looked into how developers deal with these gaps in their

TABLE III: Number and Percentage of Prompts with Knowledge Gaps Per
Conversation Style in Open (OP.) and Closed (CL.) Issues

Style of
Conversation

Missing
Context

Missing
Specification

Unclear
Instructions

Multiple
Context

OP. CL. OP. CL. OP. CL. OP. CL.
Chain of
Thought

57 (7%) 26 (3%) 13 (2%) 7 (<1%) 43 (5%) 3 (<1%) 43 (6%) 0

Directive
Prompting

68 (9%) 29 (3%) 16 (2%) 10 (1 %) 8 (1%) 5 (<1%) 2 (<1%) 1 (<1%)

Responsive
Feedback

91 (12%) 16 (2%) 5 (<1%) 2 (<1%) 4 (<1%) 3 (<1%) 0 2 (<1%)

Tree of
Thought

39 (5%) 4 (<1%) 2 (<1%) 0 10 (1%) 0 0 0

Template 1 (<1%) 1 (<1%) 0 1 (<1%) 0 1 (<1%) 0 0
Persona 1 (<1%) 1 (<1%) 1 (<1%) 0 0 0 0 0
Few-shot
Learning

5 (<1%) - 0 - 1 (<1%) - 0 -

prompts as the conversations progress and how that determines
the conversational outcome. We do this analysis for two of the
gaps, Missing context and Missing specification, because these
gaps can be addressed with additional rounds of interaction i.e,
prompts in the same conversation. Figure 4 shows the results
from this analysis. As shown in Figure 4a, out of the 89 open
conversations with Missing Context, only 17 end with no gaps,
while 72 conclude with either missing context or other gaps. In
contrast, as shown in Figure 4b, among the 56 closed conver-
sations that contain missing context gaps, 25 conclude with
no gaps, suggesting that developers provided the necessary
information and details by the end of the conversation. This
shows a key difference between closed and open issues: while
missing context is an issue in both, developers in closed issues
tend to make more effort to provide the necessary context.
We also observed the same pattern for Missing Specifications
in conversations. Out of 15 closed conversations that contain
missing specifications (Figure 4b), 8 conversations end with
no gaps. For open conversations (Figure 4a), only 4 out of 20
conversations end with no gaps.

Discussion of RQ1 Findings

Style. Across open and closed issues, developers use various
conversational styles to resolve issues with ChatGPT. How-
ever, prompt knowledge gaps persist across all styles. This
indicates that developers face challenges in effectively present-
ing issues regardless of the chosen approach. In closed issues,
Directive Prompting and Chain of Thought are the two most
used styles. Chain of Thought allows developers to address
gaps progressively by providing additional information, but
it remains highly dependent on their ability to identify and
articulate missing context both timely and effectively.

Gaps. Missing Context is the most significant gap impacting
issue-resolution conversations with ChatGPT. Providing accu-
rate and relevant information is essential to help ChatGPT
understand the context; failure to do so often results in
misunderstandings or hallucinations. While gaps are found in
both open and closed issues, closed ones tend to manage them
better through additional explanations and iterative exchanges.
This highlights the importance of recognizing and addressing
gaps proactively when interacting with LLMs.

Start of Conversation End of Conversation

(a) Open Issues
Start of Conversation End of Conversation

(b) Closed Issues

Fig. 4: Progression of Conversations with Prompt Knowledge Gaps

B. RQ2: What heuristics can be used to automatically mea-
sure the prompt knowledge gaps?

Table II presents the set of textual and code-related heuris-
tics that we investigate to automatically measure prompt
knowledge gaps. Using Logistic Regression, we analyze the
association of these heuristics with issue resolution outcomes,
where closed issues indicate successful resolution. We chose
Logistic Regression for its interpretability and efficiency in
modeling binary outcomes, making it suitable for our investi-
gation into the factors that contribute to issue resolution (i.e.,
open vs. closed issues).

To identify highly associated independent variables, we first
calculated the Variance Inflation Factor (VIF) for our heuris-
tics. To ensure the accuracy of our analysis, we eliminated
features with a VIF greater than 5 [41]. The features excluded
were #Words, #Sentences, #Repeated 2-grams, #Modifiers,
#SE Words, #Distinct Words, and #Named Entities. Addi-
tionally, to enhance the performance of our regression model,
we applied an L1 penalty. Among various configurations and
parameters tested, our best-performing regression model uses
a Robust Scaler, an L1 penalty, and the liblinear solver with
1000 iterations. The mean Cross-Validated accuracy (CV=5)
of our best-performing model is 62%. The coefficient values
of our features are presented in Table IV. In our model, the
top five features with the highest coefficients are the number
of misspellings in the text, the Flesch Reading Ease score,

the mean size of code snippets, the number of code snippets,
and the entailment of the text. As shown in Table II, we
provide a range (min, median, max) for each heuristic to show
their variability across conversations. To further examine the
statistical significance of these heuristics, we conducted a t-
test, finding several metrics to be significant (p-value<0.05):
#Named Entities, Mean Size of Code Snippets, #Code De-
scription, #Total Prompt Count, and #Misspellings.

To make our model and the effects of the features more
interpretable, and signify how important each heuristic is for
issue resolution, we also use SHAP to provide insights into
how these features affect the model [42]. The effects of each
feature are shown in Figure 5. In this figure, high feature values
are shown in red and low values in blue. For instance, lower
values of First Prompt Length negatively impact the model
(associated with open issues), while higher values positively
impact it. High values of #Unresolved References negatively
affect the model. The mean size of code snippets has a broader
range than other features, making its impact less distinct in the
figure due to the current x-axis limit. However, with expanded
limits, high mean sizes show a strongly negative impact.
Additional figures with varied x-axis limits are included in
our replication package. The results of the SHAP in Figure 5
and feature analysis in Table IV are presented below.
Specificity. Effective conversations (i.e., conversations linked
to closed issues) are associated with higher Information
Emphasis (#Repeated 3-grams) and Conditional Phrasing
(#Constraints). Repeated n-grams keeps ChatGPT’s responses
aligned with the conversation’s goal, maintaining the general
context. Constraints, reflecting detailed specifications, helps
ChatGPT produce responses that are closely tailored to the
developer’s requests.
Contextual Richness. Providing high number of code snippets
(#Code Snippets) while keeping their size small (Mean Size
Code Snippets) is associated with effective issue resolution.
Large code snippets can challenge ChatGPT’s limited context
window, leading to less accurate responses. Including more
error messages (#Error Messages) also helps ChatGPT under-
stand the problem context better. Additional features that are
associated with effective resolution are, including references
to external sources (#URLs), unique information (#Unique
Info), and longer initial prompts (First Prompt Length). Even
if ChatGPT cannot directly access external content, including
them provides a clear indication of resources or tools relevant
to the issue, which ChatGPT can factor into its response to
suggest further actions. Using repeated sets of words to main-
tain the context of the conversations with ChatGPT while at
the same time providing more unique information to keep the
conversation going forward is another interesting observation
from this analysis.
Clarity. A high number of misspellings (#Misspellings) is
strongly associated with unresolved issues, highlighting their
negative impact on ChatGPT conversations. High Flesch
readability score (Flesch Reading Ease) and textual entail-
ment (Entailment) further highlight the importance of clarity
for effective issue resolution. Incomplete sentence structures

TABLE IV: Coefficient Values of Features in Regression Model

Feature Name Regression Coefficient
#Misspellings -0.18062388

Flesch Reading Ease 0.06966411
Mean Size of Code Snippets -0.06134951

#Code Snippets 0.05318818
Entailment 0.03103776

#Unresolved Reference -0.02926126
#Constraints 0.02143247

#URLs 0.01547335
First Prompt Length 0.01426245
#Code Descriptions -0.01209851

#Incomplete Sentences 0.0116349
#Repeated 3-grams 0.00636866

#Unique Info 0.00597188
#Error Messages 0.00035634

(#Incomplete Sentences) were not found to negatively affect
conversation outcomes.
Discussion of RQ2 Findings

Our analysis highlights the importance of different heuristics
that could be leveraged to automatically improve developer
prompts related to issue resolution queries. Effective con-
versations tend to be contextually rich, including relevant
code snippets (but avoiding large files), unique details in
descriptions, references, and error logs. They also exhibit high
specificity through the addition of detailed requirements related
to the issue. Effective conversations also maintain clarity by
minimizing misspellings and ambiguity.

Fig. 5: Impact of Features on Model’s Outcome Based on SHAP

V. FEASIBILITY STUDY

To explore whether the heuristics from RQ2 can be lever-
aged to develop a tool for detecting prompt knowledge gaps,
we conduct a feasibility study. Our goal is to develop a
lightweight tool that could be easily adapted into the devel-
oper workflows for issue resolution. Therefore, we develop a
browser extension that can help users create tailored, detailed
prompts for issue resolution. The frontend is developed using
HTML, CSS, and JavaScript, with Flask powering the backend
that uses our logistic regression models to evaluate the prompts
to see what is missing from the prompt. (more details are
provided in the replication package). A snapshot of our tool
is shown in Figure 6. Users can enter the issue details in the
Description field, including the expected outcome, program-
ming language, and version. Code snippets can be added by
uploading files or pasting them into the Code Snippets box.

Error logs and stack traces can be entered under Error Log,
relevant libraries or frameworks in Libraries/Frameworks,
and additional resources to aid context in the Resources box.

Our tool offers developers a structured template designed
to capture critical information essential for effective issue
resolution, minimizing the risk of commonly observed knowl-
edge gaps like Missing Context, Missing Specifications, or
Unclear Instructions. Once the template is completed, the tool
automatically evaluates the input against predefined heuristics,
generating a score for each. Based on these scores, developers
can iteratively refine their inputs to achieve higher scores.
Once satisfied, they can copy the optimized, structured prompt
for use in their issue-resolution conversations with LLMs. To
illustrate an example, we present the tool’s performance using
the open and closed conversations shown in Figure 1. We
extract the information from each conversation, populate the
corresponding fields in the UI, and run the tool to display
individual analyses for each case. The generated scores are
the mean average of the features included in each heuristic.
Closed Conversation. In this conversation, the user provides
a detailed issue description, including specific requirements,
a code snippet, and relevant online resources, along with
libraries that the response should incorporate. After running
the tool, it scores 54.07% for contextual richness, 80% for
specificity, and 65.86% for clarity. These scores suggest that
the prompt is likely to have effective results but still has room
for improvement. The analysis indicates that increasing the
number of code snippets, and unique information inside the
description can improve its context score, while improving
the entailment in the description by having sentences that
logically follow the same structure could enhance its clarity.
Additionally, there are six misspellings that impact the clarity
of the description.
Open Conversation. In this conversation (as shown in Figure
6), the user provides only a brief description of the issue, along
with the programming language and framework. The tool’s
analysis shows lower scores: 32.03% for contextual richness,
40% for specificity, and 53.17% for clarity. The tool correctly
identifies the gaps in the contextual richness of the prompt
and low specifications in the requirements. Although clarity is
generally good, adding relevant code snippets, resources, and
a more detailed description all are required for this prompt to
be more effective. These suggestions, along with the scores,
are provided by the tool to guide targeted improvements.

This tool showcases the potential of leveraging heuristics
to automatically identify prompt knowledge gaps in issue-
resolution conversations, empowering developers to proac-
tively enhance prompt quality. As the first step toward au-
tomating gap detection in LLM-mediated interactions, this
tool lays the groundwork for advancing the quality of such
conversations. However, its current capabilities are limited
to predefined heuristics and may not capture all nuances of
real-world developer interactions. In addition, it needs more
user feedback studies to fully demonstrate its utility. Future
enhancements, including additional features and more refined
metrics, could further improve its effectiveness. To encourage

Fig. 6: Tool for Automatic Prompt Knowledge Gap Detection

adoption and refinement, we have made the code and usage
instructions available in our replication package [43].

VI. THREATS TO VALIDITY

Construct Validity. To reduce subjectivity in our annotations,
we conducted multiple rounds of coding and discussions to
resolve conflicts and ensure consistency. The authors perform-
ing the analysis each have over three years of experience
in programming and qualitative analysis. The final average
Cohen’s Kappa agreement between them was 78%, indicating
strong inter-rater reliability.
Internal Validity. The heuristics chosen for this study are
based on a thorough qualitative analysis of content shared with
ChatGPT for issue resolution. While these heuristics capture
critical aspects, they may not encompass every nuance of the
conversations. To mitigate this, we included a wide range of
heuristics and removed highly correlated features using the
Variance Inflation Factor (VIF) to reduce potential biases. We
also conducted sanity checks on all automated measures to
ensure accuracy and prevent script errors. In our analysis,
we assume that conversations in closed issues contributed to
their resolution, while those in open issues did not. This as-
sumption is reasonable, as resolved issues indicate productive
exchanges. However, there might be instances where closed
issues were resolved using additional help, and were not
entirely based on the conversation with ChatGPT. In addition,

we do not consider the difficulty of issues in our analysis. We
acknowledge that further exploration of how issue complexity
affects issue resolution outcomes would be valuable, and leave
this as a direction for future work.
External Validity. Our findings are based on a dataset of
ChatGPT conversations shared within GitHub issue threads,
which may limit generalizability to other, unshared ChatGPT
conversations or interactions with different LLMs, such as
Gemini. We focused on ChatGPT due to its popularity and
broad usage among developers. However, it is possible that
a larger, more comprehensive dataset of GitHub developer-
ChatGPT interactions could reveal different patterns.

VII. RELATED WORK

LLMs for Issue Resolution. LLMs are now widely
applied for bug resolution and issue tracking [2], [3], [44]–
[46]. Research indicates that developers frequently engage
with ChatGPT to describe bug symptoms and seek potential
solutions [47]. While Q&A platforms like Stack Overflow have
traditionally played a significant role in helping developers
resolve issues, their traffic has declined with the rise of LLMs
[48]. Studies of Q&A forum responses and LLM-generated
answers reveal that LLMs struggle with inquiries related to
certain frameworks and libraries [48]. For instance, ChatGPT’s
accuracy for security-related questions was only 56% [49].
Users often prefer ChatGPT for its well-articulated language

[50], however, ChatGPT responses are frequently of lower
quality than those on Stack Overflow, often lacking relevance
[51]. In addition, answers available on Stack Overflow prove
to be more effective in addressing debugging tasks [52].
Advancements in LLMs have also initiated the development
of automated tools for issue resolution using LLMs [53]–[55].
By compiling a dataset of GitHub issues alongside their cor-
responding test cases [56], researchers have evaluated various
LLMs’ capabilities in understanding issues and generating cor-
rect patches. For example, Tao et al. [57] introduced an LLM-
powered multi-agent framework that achieved a resolution
rate of 13.94%. Subsequent studies that involved interactive
sessions with LLMs to identify problematic files and relevant
contextual information increased the resolution rate to 22%
[58].

Prompt Analysis. Recent studies have also focused on
studying interactions between software developers and Chat-
GPT. The most frequent inquiries directed at ChatGPT include
code generation, conceptual clarifications, and how-to ques-
tions [12]. The predominant topics identified by developers
include advanced programming guidance, information-seeking
about frameworks, and high-level design recommendations
[16], [17]. Developers often engage in multi-turn conversations
to enhance the quality of responses by asking follow-up
questions or refining their prompts [12]. LLM-generated code
are mostly used to illustrate high-level concepts or provide
examples for documentation purposes. Most conversations
revolve around requests for improvements and additional
explanations within the generated code [59]. Additionally,
Champa et al. [60] found that developers primarily seek
assistance from ChatGPT for Python code related to quality
management and issue resolution tasks. Developer-ChatGPT
interactions have been shown to be particularly effective for
software development management, optimization, and new
feature implementation [60].

Mondal et al. identified 11 factors contributing to prolonged
conversations with ChatGPT, with missing specifications and
requests for additional functionality being the most common
issues [7]. While frameworks have been developed to structure
prompts in various styles and techniques for improved LLM
responses [13], [14], [21], recent studies suggest that prompt
engineering is often unpredictable and unreliable, emphasizing
instead the importance of clearer articulation of requests [10],
[13]. Our paper contributes to this research by analyzing
prompt knowledge gaps across conversational styles, providing
heuristics to automatically detect and address these gaps to
enhance issue resolution outcomes with LLMs.

VIII. CONCLUSION AND FUTURE WORK

LLMs have shown potential for issue resolution, but there
is often a disconnect between developers’ expectations and
the responses they receive. This disconnect typically arises
from how issues are presented to LLMs, with insufficient con-
text, specifications, or clarity. While frameworks and prompt-
engineering methods attempt to refine LLM outputs, they
remain unpredictable and largely reliant on a “trial and error”

approach. Therefore, we focus on identifying and mitigating
knowledge gaps in prompts, addressing the need to help
developers with targeted suggestions.

Our analysis reveals that developers employ a range of
conversational styles in issue resolution with ChatGPT, with
Directive Prompting, Chain of Thought, and Responsive Feed-
back being the most prevalent. The most common knowledge
gaps in open issues were Missing Context, Unclear Instruc-
tions, and Multiple Contexts. For closed issues, while 86.8%
of prompts contained no gaps, Missing Context remained the
most frequent gap. Providing sufficient context is essential
for effective resolutions, yet developers often struggle to
do so effectively. Our identified heuristics also suggest that
effective conversations are contextually rich, containing related
code snippets, unique information, error messages, external
references, and longer initial prompts. Effective prompts also
include specific requirements and technical details, as well as
clear, logically structured sentences with less ambiguity.

Using these heuristics, we developed a lightweight tool to
detect knowledge gaps in prompts and offer templates that
guide developers in crafting contextually rich, specific, and
clear prompts, enabling improved LLM-driven issue resolu-
tion. Initial design demonstrates the feasibility of such a tool,
though further refinement is needed to enhance accuracy. In
the future, we plan to evaluate the tool through developer
feedback and questionnaires, and to experiment with additional
heuristics to better capture and address prompt knowledge
gaps.

REFERENCES

[1] “The state of developer ecosystem 2023.” [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2023/

[2] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” 2024.

[3] Y. Wu, Z. Li, J. M. Zhang, M. Papadakis, M. Harman, and Y. Liu,
“Large language models in fault localisation,” 2023.

[4] “How conversational programming will democra-
tize computing.” [Online]. Available: https://thenewstack.io/
how-conversational-programming-will-democratize-computing/

[5] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz,
“The programmer’s assistant: Conversational interaction with a large
language model for software development,” in Proceedings of the 28th
International Conference on Intelligent User Interfaces, ser. IUI ’23.
ACM, Mar. 2023.

[6] J. Li, E. D. Mynatt, V. Mishra, and J. Bell, “”always nice and confident,
sometimes wrong”: Developer’s experiences engaging generative ai chat-
bots versus human-powered q&a platforms,” ArXiv, vol. abs/2309.13684,
2023.

[7] S. Mondal, S. D. Bappon, and C. K. Roy, “Enhancing user interaction
in chatgpt: Characterizing and consolidating multiple prompts for issue
resolution,” 2024.

[8] X. Zhou, P. Liang, B. Zhang, Z. Li, A. Ahmad, M. Shahin, and
M. Waseem, “Exploring the problems, their causes and solutions of ai
pair programming: A study with practitioners of github copilot,” 2024.

[9] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang, L. Zhang, Z. Li,
and Y. Ma, “Exploring and evaluating hallucinations in llm-powered
code generation,” 2024.

[10] R. Battle and T. Gollapudi, “The unreasonable effectiveness of
eccentric automatic prompts,” 2024. [Online]. Available: https:
//arxiv.org/abs/2402.10949

https://www.jetbrains.com/lp/devecosystem-2023/
https://thenewstack.io/how-conversational-programming-will-democratize-computing/
https://thenewstack.io/how-conversational-programming-will-democratize-computing/
https://arxiv.org/abs/2402.10949
https://arxiv.org/abs/2402.10949

[11] A. Khurana, H. Subramonyam, and P. K. Chilana, “Why and when llm-
based assistants can go wrong: Investigating the effectiveness of prompt-
based interactions for software help-seeking,” in Proceedings of the 29th
International Conference on Intelligent User Interfaces, ser. IUI ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
288–303. [Online]. Available: https://doi.org/10.1145/3640543.3645200

[12] H. Hao, K. A. Hasan, H. Qin, M. Macedo, Y. Tian, S. H. H. Ding, and
A. E. Hassan, “An empirical study on developers shared conversations
with chatgpt in github pull requests and issues,” 2024.

[13] Q. Ma, W. Peng, H. Shen, K. Koedinger, and T. Wu, “What you say =
what you want? teaching humans to articulate requirements for llms,”
2024. [Online]. Available: https://arxiv.org/abs/2409.08775

[14] J. Kim, S. Park, K. Jeong, S. Lee, S. H. Han, J. Lee, and P. Kang,
“Which is better? exploring prompting strategy for llm-based metrics,”
2023. [Online]. Available: https://arxiv.org/abs/2311.03754

[15] T. Xiao, C. Treude, H. Hata, and K. Matsumoto, “DevGPT: Studying
Developer-ChatGPT Conversations,” Feb. 2024, arXiv:2309.03914 [cs].
[Online]. Available: http://arxiv.org/abs/2309.03914

[16] S. Mohamed, A. Parvin, and E. Parra, “Chatting with ai: Deciphering
developer conversations with chatgpt,” 2024.

[17] M. R. I. Ertugrul Sagdic, Arda Bayram, “On the taxonomy of develop-
ers’ discussion topics with chatgpt,” 2024.

[18] P. M. Stahl, “pemistahl/lingua-py,” 2024. [Online]. Available: https:
//github.com/pemistahl/lingua-py

[19] M. Oedingen, R. C. Engelhardt, R. Denz, M. Hammer, and
W. Konen, “Chatgpt code detection: Techniques for uncovering the
source of code,” AI, vol. 5, no. 3, 2024. [Online]. Available:
http://dx.doi.org/10.3390/ai5030053

[20] T. Azungah and R. Kasmad, “Qualitative research: deductive and induc-
tive approaches to data analysis,” 08 2020.

[21] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert,
A. Elnashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern
catalog to enhance prompt engineering with chatgpt,” 2023. [Online].
Available: https://arxiv.org/abs/2302.11382

[22] O. Fagbohun, R. M. Harrison, and A. Dereventsov, “An empirical
categorization of prompting techniques for large language models: A
practitioner’s guide,” 2024. [Online]. Available: https://arxiv.org/abs/
2402.14837

[23] “Prompt Engineering Guide – Nextra,” Sep. 2024. [Online]. Available:
https://www.promptingguide.ai/

[24] M. McHugh, “Interrater reliability: The kappa statistic,” Biochemia
medica : časopis Hrvatskoga društva medicinskih biokemičara / HDMB,
vol. 22, pp. 276–82, 10 2012.

[25] J. Corbin and A. Strauss, Basics of Qualitative Research (3rd ed.):
Techniques and Procedures for Developing Grounded Theory. SAGE
Publications, Inc., 2008.

[26] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman,
J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe, “Training language models to
follow instructions with human feedback,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.02155

[27] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), 2017, pp. 450–461.

[28] “Dictionary of Software Terms.” [Online]. Available: https://techterms.
com/category/software

[29] “NLTK : Natural Language Toolkit.” [Online]. Available: https:
//www.nltk.org/

[30] G. Melo, E. Law, P. Alencar, and D. Cowan, “Exploring context-
aware conversational agents in software development,” 2020. [Online].
Available: https://arxiv.org/abs/2006.02370

[31] P. Chatterjee, K. Damevski, N. A. Kraft, and L. Pollock, “Automatically
identifying the quality of developer chats for post hoc use,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 4, jul 2021. [Online]. Available:
https://doi.org/10.1145/3450503

[32] P. Chatterjee, B. Gause, H. Hedinger, and L. Pollock, “Extracting
code segments and their descriptions from research articles,” in 2017
IEEE/ACM 14th International Conference on Mining Software Reposi-
tories (MSR), 2017, pp. 91–101.

[33] “spacy · PyPI.” [Online]. Available: https://pypi.org/project/spacy/
[34] T. Barrus, “pyspellchecker: Pure python spell checker based on work by

Peter Norvig.”

[35] “Flesch Reading Ease and the Flesch Kincaid Grade
Level.” [Online]. Available: https://readable.com/readability/
flesch-reading-ease-flesch-kincaid-grade-level/

[36] B. Scott, “The SMOG Readability Formula, a Simple
Measure of Gobbledygook,” Oct. 2023, section: Readability
Formulas Help. [Online]. Available: https://readabilityformulas.com/
the-smog-readability-formula/

[37] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” 2019.

[38] T. K. Kim, “T test as a parametric statistic,” Korean Journal of
Anesthesiology, vol. 68, no. 6, p. 540, Nov. 2015. [Online]. Available:
https://pmc.ncbi.nlm.nih.gov/articles/PMC4667138/

[39] A. Ghasemi and S. Zahediasl, “Normality Tests for Statistical Analysis:
A Guide for Non-Statisticians,” International Journal of Endocrinology
and Metabolism, vol. 10, no. 2, pp. 486–489, 2012. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693611/

[40] N. Nachar, “The mann-whitney u: A test for assessing whether two
independent samples come from the same distribution,” Tutorials in
Quantitative Methods for Psychology, vol. 4, 03 2008.

[41] S. S. Habshah Midi and S. Rana, “Collinearity diagnostics of binary
logistic regression model,” Journal of Interdisciplinary Mathematics,
vol. 13, no. 3, pp. 253–267, 2010. [Online]. Available: https:
//doi.org/10.1080/09720502.2010.10700699

[42] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 4768–4777.

[43] “Anonymized repository.” [Online]. Available: https://anonymous.4open.
science/r/prompt-knowledge-gap-BE45/

[44] N. Tang, M. Chen, Z. Ning, A. Bansal, Y. Huang, C. McMillan, and
T. J.-J. Li, “An empirical study of developer behaviors for validating
and repairing ai-generated code.” Plateau Workshop.

[45] S. B. Hossain, N. Jiang, Q. Zhou, X. Li, W.-H. Chiang, Y. Lyu,
H. Nguyen, and O. Tripp, “A deep dive into large language models for
automated bug localization and repair,” vol. 1, no. FSE, 2024. [Online].
Available: https://doi.org/10.1145/3660773

[46] B. Yang, H. Tian, W. Pian, H. Yu, H. Wang, J. Klein, T. F.
Bissyandé, and S. Jin, “Cref: An llm-based conversational software
repair framework for programming tutors,” in Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2024. New York, NY, USA: Association
for Computing Machinery, 2024, p. 882–894. [Online]. Available:
https://doi.org/10.1145/3650212.3680328

[47] J. K. Das, S. Mondal, and C. K. Roy, “Investigating the utility of chatgpt
in the issue tracking system: An exploratory study,” 2024.

[48] L. D. Silva, J. Samhi, and F. Khomh, “Chatgpt vs llama: Impact,
reliability, and challenges in stack overflow discussions,” 2024.

[49] Z. Delile, S. Radel, J. Godinez, G. Engstrom, T. Brucker, K. Young,
and S. Ghanavati, “Evaluating privacy questions from stack overflow:
Can chatgpt compete?” in 2023 IEEE 31st International Requirements
Engineering Conference Workshops (REW), 2023, pp. 239–244.

[50] S. Kabir, D. N. Udo-Imeh, B. Kou, and T. Zhang, “Is stack overflow
obsolete? an empirical study of the characteristics of chatgpt answers to
stack overflow questions,” 2024.

[51] B. Xu, T.-D. Nguyen, T. Le-Cong, T. Hoang, J. Liu, K. Kim, C. Gong,
C. Niu, C. Wang, B. Le, and D. Lo, “Are we ready to embrace generative
ai for software q&a?” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2023, pp. 1713–1717.

[52] J. Liu, X. Tang, L. Li, P. Chen, and Y. Liu, “Which is a better
programming assistant? a comparative study between chatgpt and stack
overflow,” 2023.

[53] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair
in the era of large pre-trained language models,” in Proceedings
of the 45th International Conference on Software Engineering, ser.
ICSE ’23. IEEE Press, 2023, p. 1482–1494. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00129

[54] T. D. Viet and K. Markov, “Using large language models for bug
localization and fixing,” in 2023 12th International Conference on
Awareness Science and Technology (iCAST), 2023, pp. 192–197.

[55] J. Zhao, D. Yang, L. Zhang, X. Lian, Z. Yang, and F. Liu, “Enhancing
automated program repair with solution design,” in Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’24. New York, NY, USA: Association

https://doi.org/10.1145/3640543.3645200
https://arxiv.org/abs/2409.08775
https://arxiv.org/abs/2311.03754
http://arxiv.org/abs/2309.03914
https://github.com/pemistahl/lingua-py
https://github.com/pemistahl/lingua-py
http://dx.doi.org/10.3390/ai5030053
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2402.14837
https://arxiv.org/abs/2402.14837
https://www.promptingguide.ai/
https://arxiv.org/abs/2203.02155
https://techterms.com/category/software
https://techterms.com/category/software
https://www.nltk.org/
https://www.nltk.org/
https://arxiv.org/abs/2006.02370
https://doi.org/10.1145/3450503
https://pypi.org/project/spacy/
https://readable.com/readability/flesch-reading-ease-flesch-kincaid-grade-level/
https://readable.com/readability/flesch-reading-ease-flesch-kincaid-grade-level/
https://readabilityformulas.com/the-smog-readability-formula/
https://readabilityformulas.com/the-smog-readability-formula/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4667138/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693611/
https://doi.org/10.1080/09720502.2010.10700699
https://doi.org/10.1080/09720502.2010.10700699
https://anonymous.4open.science/r/prompt-knowledge-gap-BE45/
https://anonymous.4open.science/r/prompt-knowledge-gap-BE45/
https://doi.org/10.1145/3660773
https://doi.org/10.1145/3650212.3680328
https://doi.org/10.1109/ICSE48619.2023.00129

for Computing Machinery, 2024, p. 1706–1718. [Online]. Available:
https://doi.org/10.1145/3691620.3695537

[56] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and
K. Narasimhan, “Swe-bench: Can language models resolve real-world
github issues?” 2024. [Online]. Available: https://arxiv.org/abs/2310.
06770

[57] W. Tao, Y. Zhou, Y. Wang, W. Zhang, H. Zhang, and Y. Cheng,
“Magis: Llm-based multi-agent framework for github issue resolution,”
2024. [Online]. Available: https://arxiv.org/abs/2403.17927

[58] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover:
Autonomous program improvement,” in Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2024. New York, NY, USA: Association
for Computing Machinery, 2024, p. 1592–1604. [Online]. Available:
https://doi.org/10.1145/3650212.3680384

[59] K. Jin, C.-Y. Wang, H. V. Pham, and H. Hemmati, “Can ChatGPT
Support Developers? An Empirical Evaluation of Large Language
Models for Code Generation,” Mar. 2024, arXiv:2402.11702 [cs].
[Online]. Available: http://arxiv.org/abs/2402.11702

[60] A. I. Champa, M. F. Rabbi, C. Nachuma, and M. F. Zibran, “Chatgpt
in action: Analyzing its use in software development,” 2024.

https://doi.org/10.1145/3691620.3695537
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2403.17927
https://doi.org/10.1145/3650212.3680384
http://arxiv.org/abs/2402.11702

	Introduction
	Dataset
	Methodology
	RQ1: How do prompt knowledge gaps and conversation styles influence the progression and effectiveness of developer-ChatGPT conversations in issue resolution?
	RQ2: What heuristics can be used to automatically measure the prompt knowledge gaps?
	Specificity
	Contextual Richness
	Clarity

	Results and Discussion
	RQ1: How do prompt knowledge gaps and conversation styles influence the progression and effectiveness of developer-ChatGPT conversations in issue resolution?
	RQ2: What heuristics can be used to automatically measure the prompt knowledge gaps?

	Feasibility Study
	Threats to Validity
	Related Work
	Conclusion and Future Work
	References

