DISCO: A Dataset of Discord Chat Conversations for Software
Engineering Research

Keerthana Muthu Subash
School of Computer Science
Carleton University
Ottawa, Canada
keerthana.muthusubash@carleton.ca

Preetha Chatterjee
Department of Computer Science
Drexel University
Philadelphia, PA, United States
preetha.chatterjee@drexel.edu

ABSTRACT

Today, software developers work on complex and fast-moving
projects that often require instant assistance from other domain and
subject matter experts. Chat servers such as Discord facilitate live
communication and collaboration among developers all over the
world. With numerous topics discussed in parallel, mining and ana-
lyzing the chat data of these platforms would offer researchers and
tool makers opportunities to develop software tools and services
such as automated virtual assistants, chat bots, chat summarization
techniques, Q&A thesaurus, and more.

In this paper, we propose a dataset called DISCO consisting of
the one-year public DIScord chat COnversations of four software
development communities. We have collected the chat data of the
channels containing general programming Q&A discussions from
the four Discord servers, applied a disentanglement technique [13]
to extract conversations from the chat transcripts, and performed a
manual validation of conversations on a random sample (500 con-
versations). Our dataset consists of 28, 712 conversations, 1, 508, 093
messages posted by 323, 562 users. As a case study on the dataset,
we applied a topic modelling technique for extracting the top five
general topics that are most discussed in each Discord channel.

KEYWORDS

Chat conversations, software developers, conversation disentangle-
ment, online communities, Discord.

ACM Reference Format:

Keerthana Muthu Subash, Lakshmi Prasanna Kumar, Sri Lakshmi Vadlamani,
Preetha Chatterjee, and Olga Baysal. 2022. DISCO: A Dataset of Discord
Chat Conversations for Software Engineering Research. In Proceedings of
19th International Conference on Mining Software Repositories (MSR’22). ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528018

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’22, May 23-24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9303-4/22/05. .. $15.00
https://doi.org/10.1145/3524842.3528018

Lakshmi Prasanna Kumar
School of Computer Science
Carleton University
Ottawa, Canada
lakshmi.prasannakumar@carleton.ca

Sri Lakshmi Vadlamani

School of Computer Science
Carleton University
Ottawa, Canada
sri.vadlamani@carleton.ca

Olga Baysal
School of Computer Science
Carleton University
Ottawa, Canada
olga.baysal@carleton.ca

1 INTRODUCTION

In recent years, more and more software development communi-
ties adopt online chat platforms such as Discord, Slack, IRC, Gitter
and Microsoft Teams for more effective collaboration and commu-
nication on their projects. These chat platforms serve as a vital
resource for getting technical help, sharing knowledge with fellow
developers, as well as facilitating real-time conversations among
community members. In spite of the wide adoption and benefits
of chat platforms for software development communities, research
offers only a few studies on mining these chat conversations com-
pared to the studies on mining emails and bug reports [5], tuto-
rials [24], and Q&A forums [1, 10, 26, 29]. Chatterjee et al. [7, 9]
have mined and studied Slack chat conversations; their results show
that these conversations contain valuable information such as code
snippets’ description and APIs, bug debugging techniques, best
programming practices, and causes of common errors/exceptions.
Esteban et al. [23] have studied Gitter data to help new developers
get familiar with software products.

To the best of our knowledge, there have not been any studies
on Discord server data. As a public chat platform with thousands
of users all over the world, we believe that mining Discord con-
versation would provide numerous research opportunities and, in
turn, help software communities. The chat conversations in Discord
follows an informal, unstructured and asynchronous format. The
conversation length might range from 2 messages to 100s span-
ning with numerous participating users. The conversations are
not always continuous and are entwined with each other. For the
researchers to mine and use Discord chat data, the conversations
need to be subjected to a technique to separate or disentangle them.

In this paper, we present a disentangled dataset of chat con-
versations obtained from Discord servers of four programming
language communities such as Python, Go, Clojure, and Racket.
We have selected the following general technical help channels:
python#tpython-general, gophers#golang, racket$general, and
clojurianst#clojure. The source chat transcripts from these chan-
nels are exported in JSON format and then converted into XML for
the date range of November 2019 to October 2020 (12 months). The
exception is the golang channel with the chat data being exported
from November 2019 to September 2020 (11 months) due to the fair

https://doi.org/10.1145/3524842.3528018
https://doi.org/10.1145/3524842.3528018

MSR’22, May 23-24, 2022, Pittsburgh, PA, USA

Muthu Subash et al.

Data preprocessing

Download Discord
chat transcripts with
date range (JSON)

Convert JSON
Discord chat
transcripts into XML

Discord Public I
Data Server

Disentangle the
—> Discord XML chat
transcripts

Anonymize the
usernames in the
transcripts

DISCO
dataset

Figure 1: Overview of the data collection and disentanglement process.

dealing policy [36]. Under this policy, researchers are allowed to
use upto 10% of the copyrighted data.

This dataset was then subjected to the disentanglement pro-
cess by applying the modified Elsner and Charniak’s algorithm
used by Chatterjee et al. [7] for Slack chat mining. The result-
ing disentangled dataset has each XML node representing a chat
message utterance. The message utterance has three tags includ-
ing anonymized user name, a timestamp, the message text, and a
computed conversation id to identify the conversation. The DISCO
(DIScord COnversations) dataset consists of 28, 712 conversations,
1,508, 093 utterances, and 323, 562 participants.

As an exploratory case study, we have applied an LDA topic
modelling to the original dataset before disentanglement to iden-
tify the general chat topics discussed in all the four programming
language channels. To facilitate further research on chat data and
use of the DISCO dataset, we make the source XML data, JSON to
XML conversion script, dataset with disentangled conversations,
the modified Elsner and Charniak’s algorithm code, and the LDA
models publicly available!.

2 BACKGROUND AND RELATED WORK

Background: Discord, an online communication platform which
was originally developed for communication among online gamers
has become very popular like Slack, IRC, and Microsoft Teams. In
2021, Discord has over 150 million active monthly users [40]. Users
can easily access Discord on their computers, mobile phones, and
web browsers for communicating with others using audio/video
calls, text messages, files, media, etc. The collection of channels
which form communities in Discord are called servers, and users
can access these channels to post different questions related to a
particular topic, and to participate in discussions related to these
topics. Chatterjee et al. [7] have extracted 38,955 conversations
from three open Slack communities and performed a disentangle-
ment on these downloaded chat transcripts. Compared to [7] we
have extracted 28, 712 conversations from four programming server
channels. GitterCom [23] is a dataset which is also based on online
communication among developers. It has 10,000 messages collected
from ten Gitter communities which are manually annotated to state
the purpose of the communication.

Chat Disentanglement Techniques: The task of deciding to
which conversation an utterance can be linked to is called chat
disentanglement. According to Liu et al. [18], chat disentanglement
can be divided into two-step methods and end-to-end methods. In
two-step methods, the relation between a message pair is identified,
and the messages are clustered to obtain the conversation threads

Ihttps://zenodo.org/record/5909202

according to this relations. In end-to-end methods, a global conver-
sation flow is captured. One of the earliest research in this field by
Elsner and Charniak [13] is based on two-step methods. They have
also presented a corpus extracted from the IRC (Internet Relay Chat)
channel at freenode.net. Mehri and Carenini [21] have explored
the idea suggested by Elsner and Charniak [14] of using a classifier
to predict the upcoming reply messages. Additionally, a RNN is
also used to identify if a message falls in a particular thread. Jiang
et al. [15] have also leveraged a deep learning based model called
Siamese Heirarchical Convolutional Neural Network for finding
the similarities between messages to identify the messages which
are under the same conversation. Riou et al. [30] have tailored the
disentanglement technique by Elsner and Charniak [14] for French
language corpus extracted from the IRC channel of French language
Ubuntu platform. Lowe et al. [19, 20] have proposed the Ubuntu
Dialogue Corpus and performed heuristics-based disentanglement
technique on the dataset. Kummerfeld at al. [16] have released a
manually annotated disentanglement dataset consisting of more
than 70,000 messages of IRC. The messages are annotated with
reply-to relations. One of the recent works in disentangling is by
Yu and Joty [42] which proposes a pointer module for modelling
the interactions between utterances and a joint training framework
to capture contextual information. Liu et al. [18] have suggested
a deep co-training algorithm for disentanglement with two classi-
fiers such as a message pair classifier and a session classifier. Our
paper presents the first disentangled Discord conversations dataset
related to software development.

Analysis of Chats: A lot of research has been done on analysis of
chat data to understand the topics discussed in the chat, how devel-
opers interact, their style of communication, etc. Shi et al. [32] have
explored the live chat of developers from eight Gitter communities
and offered an understanding of developer communication profiles,
community structures, discussion topics, and interaction patterns.
Sahar et al. [31] have performed a study of issue reports and the res-
olution time of issues from 24 open source Gitter project chat rooms.
Wang et al. [38] have analyzed the communication style in various
Slack channel groups and studied the relation between communica-
tion style and team performance. Several researchers [6, 9, 17, 33]
have studied Slack data to understand their use in software en-
gineering. Our dataset and case study focus on Discord data and
extraction of the general topics discussed on these channels.

3 METHODOLOGY

The overall process of the Discord data collection and conversation
disentanglement is presented in Figure 1. The chat transcripts are
first downloaded in JSON format from the selected channels using

https://zenodo.org/record/5909202

DISCO: A Dataset of Discord Chat Conversations for Software Engineering Research

a date range. They are then cleaned to retain only helpful infor-
mation such as timestamp, user name, and message content and
converted into XML format. This was followed by anonymizing
the usernames in XML to ensure the privacy of the users that elim-
inates the possibility of identifying the original Discord users. The
disentanglement algorithm [7] was then leveraged to extract disen-
tangled Discord conversations (in XML format). The final dataset
includes an additional computed attribute, <conversation id>, as
part of the each message utterances.

3.1 Data Selection

We select Discord public server channels as the source in creat-
ing the dataset that can support interesting research opportunities
and tool development. Our Discord chat data complements Slack
data [7] to foster further research on studying distributed software
development communities, communication among community and
team members, informal documentation, etc. While Slack’s free plan
supports only 10,000 of the most recent messages to be searched and
viewed, Discord does not impose such limitations and preserves all
the historical chat data. Hence, many software development com-
munities have started to migrate their communication from Slack
to Discord; while some communities continue to maintain both
communication mediums [12, 25]. Gitter is another instant messag-
ing and chat platform designed for GitHub and GitLab users where
the discussions are happened on specific projects. Since many open-
source communities use Discord as their communication platform,
it is important that the conversation data from 150 million active
Discord users is collected and available to researchers.

For creating our dataset, we select Discord servers for four pro-
gramming languages such as Python, Go (or GoLang), Racket and
Clojure which demonstrate a good daily activity and a substan-
tial number of members (e.g., Python Discord server has a total
of 300,919 members) compared to other available Discord pro-
gramming servers. Anyone with a Discord user ID can join these
servers as they are publicly visible and start asking general or tech-
nical help questions on these channels. We identified the following
server channels that follow a Q&A format and offer general tech-
nical help including python#python-general, gophers#golang,
racket#general,and clojurians#clojure for our data collection
and conversation disentanglement process. To allow triangulation
with previous datasets [7], we have selected similar channels.

3.2 Data Collection and Preprocessing

Data from the Discord channels is exported as JSON files using an
open-source application, Discord Chat Exporter [35], with a specific
date range. The date range for three channels (Python, Clojure,
Racket) is from Nov-2019 to Oct-2020, while for gophers#golang
the date range is Nov-2019 to Sep-2020 due to our University’s
Fair Dealing Policy in using public copyrighted data for research
purposes [36].

The collected Discord chat transcripts in JSON format are then
converted to XML files. Each message in the resulting XML has
three tags such as a timestamp, the ID of the user and the message
text. All other information in the JSON files such as the user-related
details, reactions on the messages, etc. is removed during JSON
to XML conversation. The user IDs are then anonymized using
the randomly selected person names to preserve the privacy of

MSR’22, May 23-24, 2022, Pittsburgh, PA, USA

Table 1: Dataset of disentangled Discord conversations.

Channel #Conver. #Utter. #Users Avg CL
python#python-general 19,155 1,254,362 300,919 57.49
gophers#golang 8,860 247,179 19,983 27.47
racket#general 538 4,975 917 8.95
clojurians#clojure 159 1,577 1,743 9.99
Total 28,712 1,508,093 323,562 -

the channel users. Metrics such as the number of conversations,
utterances, users, and average conversation length (CL) for each
channel are reported in Table 1.

3.3 Conversation Disentanglement

In chat servers, the message transcripts are formed by different con-
versations (both formal and informal) happening simultaneously.
Figure 2 illustrates an example of a preprocessed Discord XML
file. The presented XML snippet covers two separate conversations
entangled with each other. The ond question was asked when the
1st conversation was in progress. The 15 conversation was then
continued before a relevant reply to the 2"¢ question was given.
This interlinked conversation flow makes it difficult to mine the
chat data.

To enable mining of the chat transcripts for researchers and tool
makers, we need to disentangle these conversations. The disentan-
glement techniques have been previously proposed for IRC [37],
Gitter [23], and Slack [7]. One of the recent research on Slack data
leveraged the well-known Elsner and Charniak disentanglement
technique [13] with some modifications. The original Elsner and
Charniak disentanglement technique used a supervised model that
considers the time frame and features between the message pairs.
It also considers the user similarity between the message pairs,
cue words, similar word usage, and technical expressions while
disentangling the chats. For Slack data, the Elsner and Charniak
technique was modified on the feature computation between the
message utterances [7].

The features were calculated 1) when the time frame of <= 1477
(1.5'®) seconds was observed between the message utterances, or
2) when the utterance was within the last 5 messages from one
another. New features that are specific to Slack including gratitude
words (e.g., “thanks”, “this works”, “makes sense”) were also added
in the modified algorithm. The modified classifier was then trained
on 500 manually disentangled Slack conversations.

We have adopted Chatterjee et al’s disentanglement technique [7]
on Slack data for our Discord data since both Slack and Discord
channels follow the same type of conversations in Q&A format.
To check the accuracy of the disentanglement process, two first
authors have selected a random block of 500 Discord messages
extracted from the Python channel, manually disentangled these
messages into conversations, and calculated a micro-averaged F-
score. Our average F-score was 0.79, similar to the one reported
by Chatterjee et al. [7] for Slack disentanglement (i.e., F-score of
0.80) which is higher than the F-score of 0.66 reported by Elsner
and Charniak. As the annotators can have disagreement over the
disentanglement process, micro-averaged F-score can be used as an
appropriate metric to calculate the quality of disentaglement [13].
This result further supports our observation that Slack and Discord

MSR’22, May 23-24, 2022, Pittsburgh, PA, USA

[

<message conversation_id=T558>

<t5>2020-01-13T18:47:08.775000</ts>

<user>Karl</user>

<text>Hey peeps just taking a minute to say hi. I'm teaching myself python and want to be able to write

libraries & what not give back to the community and just learn</text>

</message>
<message conversation_id=T558>

<t5>2020-01-13T18:48:01.588000</ts>

<user>Qira</user>

<text>Are you alright for resources?</text>
</message>
<message conversation_id=T560>

<ts>2020-01-13T18:50:19.538000</ts>

<user>Aureli</user>

<text>does anyone have any good ways of converting java code into python...?</text>
</message>

<message conversation_id=T558>

<t5>2020-01-13718:51:40.551000</ts>

<user>Karl</user>

<text>YouTube dev:o real python.. anything that comes up in a Google search read the docs</text>
</message>
<message conversation_id=T558>

<t5>2020-01-13T18:52:37.547000</ts>

<user>Bernabe</user>

<text>And we also have a few choice YouTube playlists if that's more your style</text>
</message>
<message conversation_id=T560>

<t5>2020-01-13T19:05:15.580000</ts>

<user>Foster</user>

<text>Why do you need to convert the code to python?</text>
</message>

Figure 2: Format of conversation data.

follow similar chat conversation patterns where multiple questions
are asked and answered simultaneously. This observation also sug-
gests that the same disentanglement algorithm used on Slack could
be applied for Discord.

4 CASE STUDY: TOPIC MODELLING

In order to discover the key topics discussed in a software com-
munity, researchers have previously used LDA modelling [2, 4, 32].
Similarly, we preformed a case study to identify the general top-
ics that are discussed in the four Discord servers of programming
language communities, using a Latent Dirichlet allocation (LDA),
an NLP topic modelling technique [3]. We preprocessed the data
by removing the stop words and punctuation and then applying
lemmatization. We then determined an optimal number of topics
for each dataset based on the coherence score as a metric. This
metric evaluates the quality of the learned topics by calculating
the relative distances between the words appearing in a topic [22].
A high coherence score indicates a high probability that a words
pertain to a specific topic. When evaluating the LDA model for each
of these four datasets, we have observed that the highest coherence
score varied between 0.37 to 0.42 for the topic number, N = 15. This
means that the optimal number of topics is 15 for each of these
four datasets. Although, the optimal number of topics was 15, we
noticed that the distribution of words tend to be repetitive after five
(5) topics, thus not providing any meaningful insights. Two authors
have then performed a manual labelling of the topics identified by
LDA resolving any disagreement. These topics for each of the four
datasets are presented in Table 2. While this case study is not offer-
ing an extensive analysis of chat topics, it demonstrates a potential
for leveraging topic modelling for analyzing Discord conversations
and studying developers’ communications. Moreover, the initial
results from the LDA modelling identify the five topics that are
most discussed in each of the four Discord channels.

5 LIMITATIONS AND EXTENSIONS

The Discord data we used is public and consists of conversations
in the form of Q&A that offer developers technical help and sup-
port. Our dataset does not provide information on team dynamics

Muthu Subash et al.

Table 2: General discussion topics in each Discord channel.

Dataset Topics

python#python-general Basic Python help; Installing and con-
figuring Python packages; Game devel-
opment; Django and Flask framework
tutorials; Python resources and tools.

gophers#golang General error handling; Golang learn-
ing resources; Channels in Go; In-

stalling packages; Dockerizing.

racket#general Graph plotting, GUI for Racket; Lists
recursions and iterations; Syntax or da-
tum libraries; Reference to Racket doc-

umentation.

clojurians#clojure Cron job handling and configuration;
Data structures; Channel management;
Memory management; Prime number

generation.

and interpersonal relationships as the participants are not part of
any particular organization. Discord as a real-time communica-
tion channel has gained recent popularity among developers in
collaborating on projects, exchanging ideas, and getting technical
help. The channels we selected cover general technical Q&As for
each programming language. If researchers are interested in mining
information on specific topics, the dataset can be extended by col-
lecting data for specific channels of interest. Our goal was to share
a larger dataset; but since the Discord chat data is copyrighted, we
can only collect 10% of the data for research purposes [36]. While
the currently shared Discord dataset serves as a starting point, we
will be investigating other ways to expand this dataset in future.

6 RESEARCH OPPORTUNITIES

Over the years, researchers have mined Q&A forums such as Stack
Overflow and chat servers including IRC, Slack, and Gitter to offer
insights and recommendations on APIs [28, 39], IDEs [1, 10, 29],
automatic comment generation for source code [27, 41], opinion
mining [8], and developing software engineering related thesauri
and knowledge graphs [11, 34]. Our Discord dataset can be lever-
aged for similar research lines and topics. In particular, opinion
mining is an interesting research topic having potential for develop-
ing new tools and applications given the abundance of opinions in
chats than any other developer communications. Topic modelling
and identifying topics that are prevalent in programming communi-
ties is another interesting research opportunity. We have conducted
an exploratory case study using the LDA topic modelling technique.
Potential extension would be to study the evolution of the topics
discussed on these channels. Analyzing the most discussed topics
and the problems developers face can help to make efficient support
documents such as user manuals and maintenance guides.Another
direction would be to use our dataset for designing and evaluating
chat bots or new disentanglement techniques. Machine learning
models can be trained on the DISCO dataset for summarizing the
conversations to help communities document the key topics by ex-
tracting summaries from the numerous conversations. This dataset
can be also used as an additional source of data to complement
existing chat datasets.

DISCO: A Dataset of Discord Chat Conversations for Software Engineering Research

Acknowledgements

Muthu Subash, Prasanna Kumar and Baysal acknowledge the sup-
port of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2021-03809.

REFERENCES

[1] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. 2012. Harnessing stack
overflow for the ide. In 2012 Third International Workshop on Recommendation
Systems for Software Engineering (RSSE). IEEE, 26-30.

[2] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. 2014. What are
developers talking about? An analysis of topics and trends in Stack Overflow.
Empir. Softw. Eng. 19, 3 (2014), 619-654. https://doi.org/10.1007/s10664-012-9231-

y

David M. Blei, Andrew Y. Ng, and Michael L. Jordan. 2003. Latent Dirichlet

Allocation. J. Mach. Learn. Res. 3, null (mar 2003), 993-1022.

Joshua Charles Campbell, Abram Hindle, and Eleni Stroulia. 2015. Chapter

6 - Latent Dirichlet Allocation: Extracting Topics from Software Engineering

Data. In The Art and Science of Analyzing Software Data, Christian Bird, Tim

Menzies, and Thomas Zimmermann (Eds.). Morgan Kaufmann, Boston, 139-159.

https://doi.org/10.1016/B978-0-12-411519-4.00006-9

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano

Panichella. 2012. Who is going to mentor newcomers in open source projects?. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering. 1-11.

[6] Preetha Chatterjee. 2020. Extracting archival-quality information from software-
related chats. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings. 234-237.

[7] Preetha Chatterjee, Kostadin Damevski, Nicholas A Kraft, and Lori Pollock. 2020.

Software-related slack chats with disentangled conversations. In Proceedings of

the 17th International Conference on Mining Software Repositories. 588—-592.

Preetha Chatterjee, Kostadin Damevski, and Lori Pollock. 2021. Automatic

extraction of opinion-based Q&A from online developer chats. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE). IEEE, 1260-1272.

Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and

Nicholas A Kraft. 2019. Exploratory study of slack Q&A chats as a mining source

for software engineering tools. In 2019 IEEE/ACM 16th International Conference

on Mining Software Repositories (MSR). IEEE, 490-501.

Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding help with pro-

gramming errors: An exploratory study of novice software engineers’ focus in

stack overflow posts. Journal of Systems and Software 159 (2020), 110454.

Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised

software-specific morphological forms inference from informal discussions. In

2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).

IEEE, 450-461.

[12] Daniel Crowe. 2020. Moving from Slack to Discord. https://medium.com/vaticle/
moving-from-slack-to-discord-82a5817cec43.

[13] Micha Elsner and Eugene Charniak. 2008. You talking to me? a corpus and
algorithm for conversation disentanglement. In Proceedings of ACL-08: HLT. 834~
842.

[14] Micha Elsner and Eugene Charniak. 2010. Disentangling chat. Computational
Linguistics 36, 3 (2010), 389-409.

[15] Jyun-Yu Jiang, Francine Chen, Yan-Ying Chen, and Wei Wang. 2018. Learning

to disentangle interleaved conversational threads with a siamese hierarchical

network and similarity ranking. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers). 1812-1822.

Jonathan K Kummerfeld, Sai R Gouravajhala, Joseph Peper, Vignesh Athreya,

Chulaka Gunasekara, Jatin Ganhotra, Siva Sankalp Patel, Lazaros Polymenakos,

and Walter S Lasecki. 2018. A large-scale corpus for conversation disentangle-

ment. arXiv preprint arXiv:1810.11118 (2018).

[17] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.

Why developers are slacking off: Understanding how software teams use slack.

In Proceedings of the 19th acm conference on computer supported cooperative work

and social computing companion. 333-336.

Hui Liu, Zhan Shi, and Xiaodan Zhu. 2021. Unsupervised Conversation Disen-

tanglement through Co-Training. arXiv preprint arXiv:2109.03199 (2021).

[19] Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. 2015. The ubuntu
dialogue corpus: A large dataset for research in unstructured multi-turn dialogue
systems. arXiv preprint arXiv:1506.08909 (2015).

[20] Ryan Lowe, Nissan Pow, Iulian Vlad Serban, Laurent Charlin, Chia-Wei Liu,

and Joelle Pineau. 2017. Training end-to-end dialogue systems with the ubuntu

dialogue corpus. Dialogue & Discourse 8, 1 (2017), 31-65.

=

[4

flaa

(5

=

8

=

[9

[

[10

—
-

[16

[18

[21

[22

[23

[24

™
2

[26

[27

(28]

[30

(31

[32

@
&

(34]

@
i

[40]

[41

=
)

MSR’22, May 23-24, 2022, Pittsburgh, PA, USA

Shikib Mehri and Giuseppe Carenini. 2017. Chat disentanglement: Identifying
semantic reply relationships with random forests and recurrent neural networks.

In Proceedinés of the Eighth International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 615-623.

David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. 2010. Automatic
Evaluation of Topic Coherence. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics (Los Angeles, California) (HLT ’10). Association for Computational
Linguistics, USA, 100-108.

Esteban Parra, Ashley Ellis, and Sonia Haiduc. 2020. GitterCom: A Dataset of
Open Source Developer Communications in Gitter. In Proceedings of the 17th
International Conference on Mining Software Repositories. 563-567.

Gayane Petrosyan, Martin P Robillard, and Renato De Mori. 2015. Discovering
information explaining API types using text classification. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. IEEE, 869-879.
Romaric Philogéne. 2020. Why we moved from Slack to Discord? https://www.
qovery.com/blog/why-we-moved-from-slack-to-discord.

Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining stackoverflow to turn the ide into a self-confident
programming prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories. 102-111.

Mohammad Masudur Rahman, Chanchal K Roy, and Iman Keivanloo. 2015. Rec-
ommending insightful comments for source code using crowdsourced knowledge.
In 2015 IEEE 15th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 81-90.

Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. IEEE, 349-359.

Mohammad Masudur Rahman, Shamima Yeasmin, and Chanchal K Roy. 2014.
Towards a context-aware IDE-based meta search engine for recommendation
about programming errors and exceptions. In 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE, 194-203.

Matthieu Riou, Soufian Salim, and Nicolas Hernandez. 2015. Using discursive
information to disentangle French language chat. In 2nd Workshop on Natural Lan-
guage Processing for Computer-Mediated Communication (NLP4CMC 2015)/Social
Media at GSCL Conference 2015. 23-27.

Hareem Sahar, Abram Hindle, and Cor-Paul Bezemer. 2021. How are issue
reports discussed in Gitter chat rooms? Journal of Systems and Software 172
(2021), 110852.

Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang.
2021. A first look at developers’ live chat on gitter. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 391-403.

Viktoria Stray, Nils Brede Moe, and Mehdi Noroozi. 2019. Slack me if you can!
using enterprise social networking tools in virtual agile teams. In 2019 ACM/IEEE
14th International Conference on Global Software Engineering (ICGSE). IEEE, 111-
121.

Yuan Tian, David Lo, and Julia Lawall. 2014. Automated construction of a
software-specific word similarity database. In 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE, 44-53.

Oleksii Holub (Tyrrrz). 2021. DIscord Chat Exporter - Open Source application.
https://github.com/Tyrrrz/DiscordChatExporter

Carleton University. 2022. Carleton University Fair Dealing Policy. https://
carleton.ca/secretariat/wp- content/uploads/Fair-Dealing-Policy.pdf.

David C Uthus and David W Aha. 2013. Multiparticipant chat analysis: A survey.
Artificial Intelligence 199 (2013), 106-121.

Dakuo Wang, Haoyu Wang, Mo Yu, Zahra Ashktorab, and Ming Tan. 2021. Group
Chat Ecology in Enterprise Instant Messaging: How Employees Collaborate
Through Multi-User Chat Channels on Slack. arXiv:1906.01756 [cs.HC]

Wei Wang and Michael W Godfrey. 2013. Detecting api usage obstacles: A study
of ios and android developer questions. In 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 61-64.

Wikipedia contributors. 2022. Discord (software) — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Discord_(software)&oldid=
1066743572 [Online; accessed 21-January-2022].

Edmund Wong, Jingiu Yang, and Lin Tan. 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 562~
567.

Tao Yu and Shafiq Joty. 2020. Online conversation disentanglement with pointer
networks. arXiv preprint arXiv:2010.11080 (2020).

https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1016/B978-0-12-411519-4.00006-9
https://medium.com/vaticle/moving-from-slack-to-discord-82a5817cec43
https://medium.com/vaticle/moving-from-slack-to-discord-82a5817cec43
https://www.qovery.com/blog/why-we-moved-from-slack-to-discord
https://www.qovery.com/blog/why-we-moved-from-slack-to-discord
https://github.com/Tyrrrz/DiscordChatExporter
https://carleton.ca/secretariat/wp-content/uploads/Fair-Dealing-Policy.pdf
https://carleton.ca/secretariat/wp-content/uploads/Fair-Dealing-Policy.pdf
https://arxiv.org/abs/1906.01756
https://en.wikipedia.org/w/index.php?title=Discord_(software)&oldid=1066743572
https://en.wikipedia.org/w/index.php?title=Discord_(software)&oldid=1066743572

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Data Selection
	3.2 Data Collection and Preprocessing
	3.3 Conversation Disentanglement

	4 Case Study: Topic Modelling
	5 Limitations and Extensions
	6 Research Opportunities
	References

